智能化农业装备学报(中英文) ›› 2024, Vol. 5 ›› Issue (1): 40-50.DOI: 10.12398/j.issn.2096-7217.2024.01.005
收稿日期:
2022-07-29
修回日期:
2023-12-20
出版日期:
2024-02-15
发布日期:
2024-02-07
通讯作者:
金诚谦
作者简介:
刘政,男,1990年生,江苏宿迁人,博士,助理研究员;研究方向为智能农机技术与装备。E-mail: 913573407@qq.com
基金资助:
LIU Zheng1(), JIN Chengqian1,2(), FENG Yugang1, YANG Tengxiang1
Received:
2022-07-29
Revised:
2023-12-20
Online:
2024-02-15
Published:
2024-02-07
Contact:
JIN Chengqian
摘要:
大田智能化植保机械是提高农药利用率、提升粮食品质、保障农业可持续发展的重要手段。为了解植保机械智能化技术的研究现状、明确未来发展方向,围绕高地隙植保机智能化作业的规模农田大尺度下的处方施药、地块级小尺度下的对靶喷药以及随速变量喷药三大主流方向,从感知、分析、决策、控制等方面,阐述了融合高精度卫星定位的处方图构建、空间坐标变换方法和处方识别的技术原理、对靶喷药技术路线及杂草识别关键技术研究水平,认为基于在线处方的高精度喷药是未来研究的重点;针对随速变量喷药的高精度测速这一关键技术,进行了4种测速模式的优缺点对比分析,随着卫星定位在农机上的广泛应用,卫星测速以其更加通用、便捷、精准将成为高精度测速的主要方式。为探究变量喷药控制的发展现状,对压力控制变量喷药和管路截流式流量控制变量喷药两种控制方式及实现方法进行了总结,从结构复杂性、实现的安全性和系统稳定性方面综合来看,管路截流式流量控制是实现变量喷药的主要方式,并从技术原理、实现过程及优化应用情况对流量控制的分段控制、脉宽调制、PID控制3种控制算法进行了论述,认为基于机器学习的PID控制将是改善流量调控性能重要方向。随着人工智能技术的不断发展,融合智能感知、分析决策和自主作业能力的植保机器人将成为植保机械未来主流的发展方向。
中图分类号:
刘政, 金诚谦, 冯玉岗, 杨腾祥. 植保机械智能化技术研究现状与趋势[J]. 智能化农业装备学报(中英文), 2024, 5(1): 40-50.
LIU Zheng, JIN Chengqian, FENG Yugang, YANG Tengxiang. Research status and trends of intelligent technology in plant protection machinery[J]. Journal of Intelligent Agricultural Mechanization, 2024, 5(1): 40-50.
图7 压力控制变量喷药及管路截流式流量控制变量喷药管路结构图1.可调电动球阀2.喷头 3.流量传感器 4.压力传感器5.蓄能器6.压力表 7.手动阀 8.过滤器 9.安全阀
Figure 7 Pressure control variable spraying and pipeline shut down flow control variable spraying pipeline structure diagram
1 | 王海光. 智慧植保及其发展建议[J]. 中国农业大学学报, 2022, 27(10): 1-21. |
WANG Haiguang. Smart phytoprotection and suggestions for its development [J]. Journal of China Agricultural University, 2022, 27(10): 1-21. | |
2 | 冯耀宁, 裴亮, 陈晓, 等. 变量施药关键技术综述[J]. 中国农机化学报, 2021, 42(12): 65-71. |
FENG Yaoning, PEI Liang, CHEN Xiao, et al. Summary of the key technology of variable rate application [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(12): 65-71. | |
3 | 杨学军, 严荷荣, 徐赛章. 植保机械的研究现状及发展趋势[J]. 农业机械学报, 2002, 33(6): 129-131. |
YANG Xuejun, YAN Herong, XU Saizhang. The current situation and development trend of equipment for crop protection in China [J]. Transactions of the Chinese Society for Agricultural Machinery, 2002, 33(6): 129-131. | |
4 | 杜娟, 于明群, 陈艳普, 等. 高地隙植保机速度自动控制系统研制[J]. 中国农业大学学报, 2019, 24(12): 104-110. |
DU Juan, YU Mingqun, CHEN Yanpu, et al. Development of an automatic speed control system for high-clearance sprayer [J]. Journal of China Agricultural University, 2019, 24(12): 104-110. | |
5 | 刘丰乐, 张晓辉, 马伟伟, 等. 国外大型植保机械及施药技术发展现状[J]. 农机化研究, 2010(3): 246-248. |
LIU Fengle, ZHANG Xiaohui, MA Weiwei, et al. Current development status of foreign big-scale protection machinery and application technology [J]. Journal of Agricultural Mechanization Research, 2010(3): 246-248. | |
6 | 王卫国. 德国的植保机械和植保机械的管理[J]. 植保技术与推广, 1998(4): 45-46, 8. |
7 | 耿爱军, 李法德, 李陆星. 国内外植保机械及植保技术研究现状[J]. 农机化研究, 2007(4): 189-191. |
GENG Aijun, LI Fade, LI Luxing. The plant protection machinery and technology at home and abroad [J]. Journal of Agricultural Mechanization Research, 2007(4): 189-191. | |
8 | AITKENHEAD M J, DALGETTY I A, MULLINS C E, et al. Weed and crop discrimination using image analysis and artificial intelligence methods [J]. Computers and Electronics in Agriculture, 2003(3): 157-171. |
9 | FELIZARDO K R, MERCALDI H V, CRUBINEL P E, et al. Modeling and model validation of chemical injection sprayer system [J]. Applied Engineering in Agriculture, 2016, 32(3): 285-297. |
10 | 何雄奎. 高效植保机械与精准施药技术进展[J]. 植物保护学报, 2022, 49(1): 389-397. |
HE Xiongkui. Research and development of efficient plant protection equipment and precision spraying technology in China: A review [J]. Journal of Plant Protection, 2022, 49(1): 389-397. | |
11 | 贾卫东, 张磊江, 燕明德, 等. 喷杆喷雾机研究现状及发展趋势[J]. 中国农机化学报, 2013, 34(4): 19-22. |
JIA Weidong, ZHANG Leijiang, YAN Mingde, et al. Current situation and development trend of boom sprayer [J]. Journal of Chinese Agricultural Mechanization, 2013, 34(4): 19-22. | |
12 | 郑文钟, 应霞芳. 我国植保机械和施药技术的现状、问题及对策[J]. 农机化研究, 2008(5): 219-221. |
ZHENG Wenzhong, YING Xiafang. Study on actuality and problems with measure of plant protection machinery and spray techniques of agricultural chemicals in China [J]. Journal of Agricultural Mechanization Research, 2008(5): 219-221. | |
13 | 冯耀宁, 裴亮, 李晔, 等. 自走式喷杆喷雾机行业现状与发展趋势[J]. 中国农机化学报, 2019, 40(6): 56-59, 66. |
FENG Yaoning, PEI Liang, LI Ye, et al. Industry status and development trend of self-propelled boom spray [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(6): 56-59, 66. | |
14 | 工业和信息化部装备工业司.《中国制造2025》规划系列解读之农业机械装备领域[J]. 现代农业装备, 2015(3): 7-8. |
15 | LUCK J D, PITLA S K, SHEARER S A, et al. Potential for pesticide and nutrient savings via map-based automatic boom section control of spray nozzles [J]. Computers and Electronics in Agriculture, 2010, 70(1): 19-26. |
16 | NORDMEYER H. Patchy weed distribution and site-specific weed control in winter cereals [J]. Precision Agriculture, 2006, 7: 219-231. |
17 | 尹东富, 陈树人, 裴文超, 等. 基于处方图的室内变量喷药除草系统设计[J]. 农业工程学报, 2011, 27(4): 131-135. |
YIN Dongfu, CHEN Shuren, PEI Wenchao, et al. Design of map-based indoor variable weed spraying system [J]. Transactions of the CSAE, 2011, 27(4): 131-135. | |
18 | 王利霞, 张书慧, 马成林, 等. 基于ARM的变量喷药控制系统设计[J]. 农业工程学报, 2010, 26(4): 113-118. |
WANG Lixia, ZHANG Shuhui, MA Chenglin, et al. Design of variable spraying system based on ARM [J]. Transactions of the CSAE, 2010, 26(4): 113-118. | |
19 | 陈志刚, 陈梦溪, 魏新华, 等. 基于北斗定位的农田变量处方施药喷雾系统[J]. 排灌机械工程学报, 2015, 33(11): 965-970. |
CHEN Zhigang, CHEN Mengxi, WEI Xinhua, et al. Variable prescription pesticide spraying system for farmland based on the Beidou navigation satellite system [J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(11): 965-970. | |
20 | SABZI S, ABBASPOUR-GILANDEH Y, ARRIBAS J I. An automatic visible-range video weed detection, segmentation and classification prototype in potato field [J]. Heliyon, 2020, 6(5): e03685. |
21 | PARTEL V, CHARAN KAKARLA S, AMPATZIDIS Y. Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence [J]. Computers and Electronics in Agriculture, 2019, 157: 339-350. |
22 | 袁佐云, 毛志怀, 魏青. 基于计算机视觉的作物行定位技术[J]. 中国农业大学学报, 2005, 10(3): 69-72. |
YUAN Zuoyun, MAO Zhihuai, WEI Qing. Orientation technique of crop rows based on computer vision [J]. Journal of China Agricultural University, 2005, 10(3): 69-72. | |
23 | 黄华盛. 基于无人机遥感图像的稻田杂草识别研究[D]. 广州: 华南农业大学, 2022. |
HUANG Huasheng. The research on weed recognition in rice fields using UAV remote sensing imagery [D]. Guangzhou: South China Agricultural University, 2022. | |
24 | 付豪, 赵学观, 翟长远, 等. 基于深度学习的杂草识别方法研究进展[J]. 中国农机化学报, 2023, 44(5): 198-207. |
FU Hao, ZHAO Xueguan, ZHAI Changyuan, et al. Research progress on weed recognition method based on deep learning technology [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 198-207. | |
25 | 彭明霞, 夏俊芳, 彭辉. 融合FPN的Faster R-CNN复杂背景下棉田杂草高效识别方法[J]. 农业工程学报, 2019, 35(20): 202-209. |
PENG Mingxia, XIA Junfang, PENG Hui. Efficient recognition of cotton and weed in field based on Faster R-CNN by integrating FPN [J]. Transactions of the CSAE, 2019, 35(20): 202-209. | |
26 | 王国伟, 刘嘉欣. 基于卷积神经网络的玉米病害识别方法研究[J]. 智能化农业装备学报(中英文), 2021, 2(1): 64-70. |
WANG Guowei, LIU Jiaxin. Research on corn disease recognition method based on convolutional neural network [J]. Journal of Intelligent Agricultural Mechanization, 2021, 2(1): 64-70. | |
27 | 惠巧娟, 马伟, 边超. 融合强化注意力机制的农田杂草识别方法[J]. 中国农机化学报, 2023, 44(4): 195-201. |
HUI Qiaojuan, MA Wei, BIAN Chao. Agricultural weeds recognition method based on enhanced attention mechanism [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 195-201. | |
28 | 马盼, 杨子恒, 万虎, 等. 基于YOLOv8网络的棉蚜图像识别算法及软件系统设计[J]. 智能化农业装备学报(中英文), 2023, 4(3): 42-49. |
MA Pan, YANG Ziheng, WAN Hu, et al. A new cotton aphid image recognition algorithm and software based on YOLOv8 [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(3): 42-49. | |
29 | 毛文华, 张银桥, 王辉, 等. 杂草信息实时获取技术与设备研究进展[J]. 农业机械学报, 2013, 44(1): 190-195. |
MAO Wenhua, ZHANG Yinqiao, WANG Hui, et al. Advance techniques and equipments for real-time weed detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(1): 190-195. | |
30 | 刘成良, 林洪振, 李彦明, 等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报, 2020, 51(1): 1-18. |
LIU Chengliang, LIN Hongzhen, LI Yanming, et al. Analysis on status and development trend of intelligent control technology for agricultural equipment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 1-18. | |
31 | 田光兆, 安秋, 姬长英, 等. 低速智能农业车辆多分辨率自适应测速系统设计[J]. 农业机械学报, 2013, 44(2): 159-164. |
TIAN Guangzhao, AN Qiu, JI Changying, et al. Design of multiresolution adaptive speed measurement system for low-speed intelligent agricultural vehicle [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 159-164. | |
32 | 李乐乐, 贺凯飞, 王振杰, 等. GPS实时单站测速和相对测速的误差比较与精度分析[J]. 大地测量与地球动力学, 2019, 39(10): 1063-1069. |
LI Lele, HE Kaifei, WANG Zhenjie, et al. Error comparison and accuracy analysis between stand-alone and relative velocity determination using GPS [J]. Journal of Geodesy and Geodynamics, 2019, 39(10): 1063-1069. | |
33 | 王潜心. 机载GPS动态定位定速与定姿理论研究及软件开发[D]. 长沙: 中南大学, 2011. |
WANG Qianxin. Research of airborne GPS kinematic position velocity and attitude determination and software development [D]. Changsha: Central South University, 2011. | |
34 | 何海波, 杨元喜, 孙中苗. 几种GPS测速方法的比较分析[J]. 测绘学报, 2002, 31(3): 217-221. |
HE Haibo, YANG Yuanxi, SUN Zhongmiao. A comparison of several approaches for velocity determination with GPS [J]. Acta Geodaetica et Cartographica Sinica, 2002, 31(3): 217-221. | |
35 | 孟志军, 刘卉, 付卫强, 等. 农田作业机械测速方法试验[J]. 农业工程学报, 2010, 26(6): 141-145. |
MENG Zhijun, LIU Hui, FU Weiqiang, et al. Evaluation of ground speed measurements for agricultural machinery [J]. Transactions of the CSAE, 2010, 26(6): 141-145. | |
36 | GONZALEZ R, PAWLOWSKI A, RODRIGUEZ C, et al. Design and implementation of an automatic pressure-control system for a mobile sprayer for greenhouse applications [J]. Spanish Journal of Agricultural Research, 2012, 10(4): 939-949. |
37 | 王利霞. 基于处方图的变量喷药系统研究[D]. 长春: 吉林大学, 2010. |
WANG Lixia. Variable-rate spraying system based on the prescription map [D]. Changchun: Jilin University, 2010. | |
38 | 范龙. 变喷杆式喷雾机可变喷量施药控制系统研究[D]. 南京: 南京林业大学, 2016. |
FAN Long. Research on variable rate spraying control system for boom-transformable sprayer [D]. Nanjing: Nanjing Forestry University, 2016. | |
39 | 翟长远, 朱瑞祥, 随顺涛, 等. 车载式变量施药机控制系统设计与试验[J]. 农业工程学报, 2009, 25(8): 105-109. |
ZHAI Changyuan, ZHU Ruixiang, SUI Shuntao, et al. Design and experiment of control system of variable pesticide application machine hauled by tractor [J]. Transactions of the CSAE, 2009, 25(8): 105-109. | |
40 | SILVA J E, ZHU H P, CUNHA J P A R D.Spray outputs from a variable-rate sprayer manipulated with PWM solenoid valves [J]. Applied Engineering in Agriculture, 2018, 34(3): 527-534. |
41 | 蒋焕煜, 周鸣川, 童俊华. 卡尔曼滤波PWM变量喷雾控制研究[J]. 农业机械学报, 2014, 45(10): 60-65. |
JIANG Huanyu, ZHOU Mingchuan, TONG Junhua. Design and experiment of rotary converter of liquid fertilizer [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 60-65. | |
42 | 尹东富, 陈树人, 毛罕平, 等. 基于模糊控制的棉田变量对靶喷药除草系统设计[J]. 农业机械学报, 2011, 42(4): 179-183. |
YIN Dongfu, CHEN Shuren, MAO Hanping, et al. Weed control system for variable target spraying based on fuzzy control [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(4): 179-183. | |
43 | 李为. 果园对吧施药控制系统设计[D]. 咸阳: 西北农林科技大学, 2014. |
LI Wei. Design of target pesticide application control system in the orchard [D]. Xianyang: Northwest A&F University, 2014. | |
44 | 蔡有杰, 吴志东, 高诗博, 等. 基于PID控制的变量式喷药系统设计与仿真[J]. 粮食与油脂, 2020, 33(2): 97-100. |
CAI Youjie, WU Zhidong, GAO Shibo, et al. Design and simulation of variable injection system based on PID control [J]. Journal of Grain and Oils, 2020, 33(2): 97-100. | |
45 | 王新东, 徐艳蕾, 张奇, 等. 基于灰狼优化PID控制的变量喷药系统研究[J]. 农机化研究, 2020(5): 114-119. |
WANG Xindong, XU Yanlei, ZHANG Qi, et al. Research on variable spraying system based on grey wolf optimized PID control [J]. Journal of Agricultural Mechanization Research, 2020(5): 114-119. | |
46 | 邵陆寿, 戴之祥, 崔怀雷, 等. 基于模糊控制的变量施药控制系统[J]. 农业机械学报, 2005, 36(11): 110-112. |
SHAO Lushou, DAI Zhixiang, CUI Huailei, et al. Study on a pesticide system spraying with changeable quantity based on fuzzy control [J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(11): 110-112. | |
47 | 宋乐鹏, 董志明, 向李娟, 等. 变量喷雾流量阀的变论域自适应模糊PID控制[J]. 农业工程学报, 2010, 26(11): 114-118. |
SONG Lepeng, DONG Zhiming, XIANG Lijuan, et al. Variable universe adaptive fuzzy PID control of spray flow valve [J]. Transactions of the CSAE, 2010, 26(11): 114-118. |
[1] | 罗锡文. 人工智能与植保机械化[J]. 智能化农业装备学报(中英文), 2020, 1(1): 1-6. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||