随着农业生产对田间管理要求的不断提升,传统的农机设备已逐渐难以适应现代智慧农业的生产需求。在这一背景下,土壤墒情监测技术作为现代农田管理中获取土壤含水率信息的关键手段,正扮演着推动农机向自动化、智能化发展的重要角色。为此,深入梳理和分析国内外土壤墒情监测技术研究现状,重点围绕土壤墒情监测的方式及原理、模型构建算法以及信号处理方法这3个方面技术的研究进展进行阐述,通过对比分析,归纳与总结了国内外在监测方式、原理、模型构建算法和信号处理方法上的异同以及实际应用中存在的问题和面临的挑战,并提出了土壤墒情监测技术在这3个方面未来的发展趋势:土壤墒情监测方式方面,构建多源土壤墒情监测信息平台,以实现更全面的数据收集和分析;模型构建算法方面,通过采用机器学习和深度学习算法,为不同土壤环境和作业场景量身定制模型算法模块,提高监测设备准确性和适用性;信号处理方面,加强多源信号融合技术的应用,降低作业环境对监测设备的影响。