[1] Liu R, Wei Y, Zhang B. Quality Control of Dried Noodle Processing Based on Statistical Process Control (SPC) [J]. 2013, 34(8): 43-47. [2] Fu B X, Assefaw E G, Sarkar A K, et al. Evaluation of durum wheat fine flour for alkaline noodle processing [J]. 2006, 51(4): 178-183. [3] Arun K B, Chandran J, Dhanya R, et al. A comparative evaluation of antioxidant and antidiabetic potential of peel from young and matured potato [J]. Food Bioscience, 2015, 9(4): 36-46. [4] Qiu Gan, Xu Xin, Deng Yun. Study on physicochemical properties of purple potato flour-wheat flour mixture [J]. Food research and development, 2017, 38(3): 15-19. [5] Valcarcel J, Reilly K, Gaffney M, et al. Total carotenoids and l-ascorbic acid content in 60 varieties of potato grown in ireland [J]. Potato Research, 2015, 58(1): 29-41 [6] Jin H, Li L, Cheng J. Rapid and non-destructive determination of moisture content of peanut kernels using hyperspectral imaging technique [J]. Food Analytical Methods, 2015, 8(10): 2524-2532. [7] Yang Q, Sun D W, Cheng W. Development of simplified models for nondestructive hyperspectral imaging monitoring of TVB-N contents in cured meat during drying process [J]. Journal of Food Engineering, 2016, 192(1): 53-60. [8] Chyngyz E, Kieran Derksen, Jitendra Paliwal. Single kernel wheat hardness estimation using near infrared hyperspectral imaging [J]. Infrared Physics and Technology, 2019, 98: 250-255. [9] KamruzzamanM, Makino Y, Oshita S, et al. Assessment of visible near-infrared hyperspectral imaging as a tool for detection of horsemeat adulteration in minced beef [J]. Food and Bioprocess Technology, 2015, 8(5): 1054-1062. [10] Zhang X, Liu F, He Y, et al. Application of hyperspectral imaging and chemometric calibrations for variety discrimination of maize seeds [J]. Sensors, 2012, 12(12): 17234-17246. [11] Liu D, Sun D W, Zeng X A. Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry [J]. Food and Bioprocess Technology, 2014, 7(2). 307-323. [12] Liu D, Zeng X A, Sun D W. Recent developments and applications of hyperspectral imaging for quality evaluation of agricultural products: A review [J]. Critical Reviews in Food Science and Nutrition, 2015, 55(12): 1744-1757. [13] Kristin Tøndel, Indahl U G, Gjuvsland A B, et al. Hierarchical cluster-based partial least squares regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models [J]. BMC Systems Biology, 2011, 5(1): 90. [14] Zhu Y, Shen G, Xiang Q. Quantitative analysis of salinized soil reflectance spectra during microbial remediation processes based on PLSR[C]. 2016 5th International Conference on Agro-geoinformatics (Agro-geoinformatics). IEEE, 2016. [15] Ma W B, Tan K, Li H D. Hyperspectral inversion of heavy metals in soil of a mining area using extreme learning machine [J]. Journal of Ecology & Rural Environment, 2016, 32(2): 213-218. [16] Wang L, Wang Q, Liu H, et al. Determining the contents of protein and amino acids in peanuts using near-infrared reflectance spectroscopy [J]. Journal of the Science of Food and Agriculture, 2013, 93(1). 118-124. [17] Sundaram J, Kandala C V, Butts C L. Application of near infrared spectroscopy to peanut grading and quality analysis: overview [J]. Sensing & Instrumentation for Food Quality & Safety, 2009, 3(3): 156-164. [18] Maghirang E B, Dowell F E. Hardness Measurement of Bulk Wheat by Single-Kernel Visible and Near-Infrared Reflectance Spectroscopy [J]. Cereal Chemistry Journal, 2003, 80(3): 316-322. [19] Ravikanth, Lankapalli, Singh, Chandra B, Jayas, Digvir S. Classification of contaminants from wheat using near-infrared hyperspectral imaging [J]. Biosystems Engineering, 2015, 135(7): 73-86. [20] Dai Q, Cheng J H, Sun D W, et al. Advances in Feature Selection Methods for Hyperspectral Image Processing in Food Industry Applications: A Review [J]. Critical Reviews in Food Science and Nutrition, 2015, 55(10): 1368-1382. [21] Cuadrado M U, Castro L D, P. M. Pérez Juan, et al. Comparison and joint use of near infrared spectroscopy and Fourier transform mid infrared spectroscopy for the determination of wine parameters [J]. Talanta, 2005, 66(1): 220-224. [22] 张娟利,宋朝阳,韩文霆, 等. 基于RGB图像处理的烟叶水分无损检测方法研究[J]. 中国农机化学报, 2019, 40(5): 62-68. Zhang Juanli, Song Chaoyang, Han Wenting, et al. Nondestructive testing of tobacco leaf water status by using digital RGB images [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(5): 62-68. [23] 霍迎秋, 张晨, 李宇豪, 等. 高光谱图像结合机器学习方法无损检测猕猴桃[J]. 中国农机化学报, 2019, 40(4): 71-77. Huo Yingqiu, Zhang Chen, Li Yuhao, et al. Nondestructive detection for kiwifruit based on the hyperspectral technology and machine learning [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 71-77. [24] 刘崇林, 胡军, 赵胜雪, 等. 马铃薯收获机具研究进展[J]. 中国农机化学报, 2019, 40(4): 31-35, 124. Liu Chonglin, Hu Jun, Zhao Shengxue, et al. Research progress on potato harvesting equipments [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 31-35, 124. [25] 杨红光, 胡志超, 王冰, 等. 马铃薯收获机械化技术研究进展[J]. 中国农机化学报, 2019, 40(11): 27-34. Yang Hongguang, Hu Zhichao, Wang Bing, et al. Research progress of harvesting mechanization technology of potato [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(11): 27-34. |