智能化农业装备学报(中英文) ›› 2023, Vol. 4 ›› Issue (4): 41-48.DOI: 10.12398/j.issn.2096-7217.2023.04.006
收稿日期:
2023-08-20
修回日期:
2023-11-08
出版日期:
2023-11-15
发布日期:
2023-11-15
通讯作者:
郭文娟,女,1986年生,甘肃武威人,博士研究生,讲师;研究方向为智能信息处理与图像处理。E-mail:565105996@qq.com
作者简介:
郭文娟,女,1986年生,甘肃武威人,博士研究生,讲师;研究方向为智能信息处理与图像处理。E-mail: 565105996@qq.com
基金资助:
GUO Wenjuan1,2(), FENG Quan2
Received:
2023-08-20
Revised:
2023-11-08
Online:
2023-11-15
Published:
2023-11-15
Contact:
GUO Wenjuan.E-mail:565105996@qq.com
About author:
GUO Wenjuan.E-mail:565105996@qq.com
摘要:
深度学习模型被广泛应用于农作物检测和识别领域,其优势在于通过构建不同的功能感知层而优化模型,能够自动提取输入数据的特征,实现端到端地学习。但是该模型中未知的数据处理过程导致模型缺乏可解释性,成为阻碍深度学习应用的主要因素。为克服深度学习模型可解释性不足的缺陷,研究者提出了基于类激活映射的可解释性方法。概述了类激活映射算法Grad-CAM在农作物病害分类和检测、农作物虫害检测识别、农作物品种分类、目标农作物检测以及其他应用上的研究进展,说明了类激活映射算法具有能够可视化任意结构卷积神经网络的优点,分析了类激活映射算法存在解释精细度不高、梯度不稳定、缺乏评估标准以及应用背景单一的不足,提出了构建既具有高准确率又具有可解释性的模型、构建新型解释算法、建立可解释性算法统一的评估标准和保证可解释性算法正确性的发展趋势。
中图分类号:
郭文娟, 冯全. 基于类激活映射的可解释性方法在农作物检测识别中的发展现状与趋势[J]. 智能化农业装备学报(中英文), 2023, 4(4): 41-48.
GUO Wenjuan, FENG Quan. Development status and trends of interpretability methods based on class activation mapping in crop detection and recognition[J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(4): 41-48.
1 | 宋怀波, 何东健. 面向精细农业的高维数据本征维数估计方法研究进展[J]. 中国科学: 信息科学, 2010, 40(S1): 104-110. |
SONG Huaibo, HE Dongjian. Research progress on intrinsic dimension estimation of precision agriculture-oriented high dimensional dataset [J]. Scientia Sinica(Informationis), 2010, 40(S1): 104-110. | |
2 | 孟建军. 现代农业新概念[M]. 北京: 中国农业出版社, 2010. |
3 | 吕盛坪, 李灯辉, 冼荣亨. 深度学习在我国农业中的应用研究现状[J]. 计算机工程与应用, 2019, 55(20): 24-33. |
Shengping LÜ, LI Denghui, XIAN Rongheng. Research status of deep learning in agriculture of China [J]. Computer Engineering and Applications, 2019, 55(20): 24-33. | |
4 | 翁杨, 曾睿, 吴陈铭, 等. 基于深度学习的农业植物表型研究综述[J]. 中国科学: 生命科学, 2019, 49(6): 698-716. |
WENG Yang, ZENG Rui, WU Chenming, et al. A survey on deep-learning-based plant phenotype research in agriculture [J]. Scientia Sinica(Vitae), 2019, 49(6): 698-716. | |
5 | 傅隆生, 宋珍珍, 张鑫, 等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报, 2020, 25(2): 105-120. |
FU Longsheng, SONG Zhenzhen, ZHANG Xin, et al. Applications and research progress of deep learning in agriculture [J]. Journal of China Agricultural University, 2020, 25(2): 105-120. | |
6 | KAMILARIS A, PRENAFETA-BOLDÚ F X. Deep learning in agriculture: A survey [J]. Computers and electronics in agriculture, 2018, 147: 70-90. |
7 | 化盈盈, 张岱墀, 葛仕明. 深度学习模型可解释性的研究进展[J]. 信息安全学报, 2020, 5(3): 1-12. |
HUA Yingying, ZHANG Daichi, GE Shiming. Research progress in the interpretability of deep learning models [J]. Journal of Cyber Security, 2020, 5(3): 1-12. | |
8 | 曾春艳, 严康, 王志锋, 等. 深度学习模型可解释性研究综述[J]. 计算机工程与应用, 2021, 57(8): 1-9. |
ZENG Chunyan, YAN Kang, WANG Zhifeng, et al. Survey of interpretability research on deep learning models [J]. Computer Engineering and Applications, 2021, 57(8): 1-9. | |
9 | MONTAVON G, SAMEK W, MÜLLER K R. Methods for interpreting and understanding deep neural networks [J]. Digital signal processing, 2018, 73: 1-15. |
10 | 司念文, 张文林, 屈丹, 等. 卷积神经网络表征可视化研究综述[J]. 自动化学报, 2022, 48(8): 1890-1920. |
SI Nianwen, ZHANG Wenlin, QU Dan, et al. Representation visualization of convolutional neural networks: A Survey [J]. Acta Automatica Sinica, 2022, 48(8): 1890-1920. | |
11 | 杨朋波, 桑基韬, 张彪, 等. 面向图像分类的深度模型可解释性研究综述[J]. 软件学报, 2023, 34(1): 230-254. |
YANG Pengbo, SANG Jitao, ZHANG Biao, et al. Survey on interpretability of deep models for image classification [J]. Journal of Software, 2023, 34(1): 230-254 . | |
12 | 窦慧, 张凌茗, 韩峰, 等. 卷积神经网络的可解释性研究综述 [J/OL]. 软件学报, 1-27[2023-11-05]. |
DOU Hui, ZHANG Lingming, HAN Fdeng, et al. Survey on convolutional neural network interpretability [J/OL]. Journal of Software, 1-27[2023-11-05]. | |
13 | ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization [C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 2921-2929. |
14 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization [C]// Proceedings of the IEEE international conference on computer vision. 2017: 618-626. |
15 | CHATTOPADHAY A, SARKAR A, HOWLADER P, et al. Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks [C]//2018 IEEE winter conference on applications of computer vision (WACV). IEEE, 2018: 839-847. |
16 | 邵明月, 张建华, 冯全, 等. 深度学习在植物叶部病害检测与识别的研究进展[J]. 智慧农业(中英文), 2022, 4(1): 29-46. |
SHAO Mingyue, ZHANG Jianhua, FENG Quan, et al. Research progress of deep learning in detection and recognition of plant leaf diseases [J]. Smart Agriculture, 2022, 4(1): 29-46. | |
17 | 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7):1-18. |
ZHAI Zhaoyu, CAO Yifei, XU Huanliang, et al. Review of key techniques for crop disease and pest detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 1-18. | |
18 | 郭文娟, 冯全, 李相周. 基于农作物病害检测与识别的卷积神经网络模型研究进展[J]. 中国农机化学报, 2022, 43(10): 157-166. |
GUO Wenjuan, FENG Quan, LI Xiangzhou. Research progress of convolutional neural network model based on crop disease detection and recognition [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 157-166. | |
19 | 王美华, 吴振鑫, 周祖光. 基于注意力改进CBAM的农作物病虫害细粒度识别研究[J]. 农业机械学报, 2021, 52(4): 239-247. |
WANG Meihua, WU Zhenxin, ZHOU Zuguang. Fine-grained identification research of crop pests and diseases based on improved CBAM via attention [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 239-247. | |
20 | 王泽钧, 马凤英, 张瑜, 等. 基于注意力机制和多尺度轻量型网络的农作物病害识别[J]. 农业工程学报, 2022, 38(S1): 176-183. |
WANG Zejun, MA Fengying, ZHANG Yu, et al. Crop disease recognition using attention mechanism and multi-scale lightweight network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(S1): 176-183. | |
21 | 李大湘, 曾小通, 刘颖. 耦合全局与局部特征的苹果叶部病害识别模型[J]. 农业工程学报, 2022, 38(16): 207-214. |
LI Daxiang, ZENG Xiaotong, LIU Ying. Apple leaf disease identification model by coupling global and patch features [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(16): 207-214. | |
22 | 于明, 李若曦, 阎刚, 等. 基于颜色掩膜网络和自注意力机制的叶片病害识别方法[J]. 农业机械学报, 2022, 53(8): 337-344. |
YU Ming, LI Ruoxi, YAN Gang, et al. Crop diseases recognition method via fusion color mask and self-attention mechanism [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 337-344. | |
23 | 贾璐, 叶中华. 基于注意力机制和特征融合的葡萄病害识别模型[J]. 农业机械学报, 2023, 54(7): 223-233. |
JIA Lu, YE Zhonghua. Grape disease recognition model based on attention mechanism and feature fusion [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 223-233. | |
24 | 李康顺, 杨振盛, 江梓锋, 等. 基于改进YOLOX-Nano的农作物叶片病害检测与识别方法[J]. 华南农业大学学报, 2023, 44(4): 593-603. |
LI Kangshun, YANG Zhensheng, JIANG Zifeng, et al. Detection and identification of crop leaf diseases based on improved YOLOX-Nano [J]. Journal of South China Agricultural University, 2023, 44(4): 593-603. | |
25 | 刘德营, 王家亮, 林相泽, 等 . 基于卷积神经网络的白背飞虱识别方法[J]. 农业机械学报, 2018, 49(5): 51-56. |
LIU Deying, WANG Jialiang, LIN Xiangze,et al. Automatic identification method for Sogatella furcifera based on convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 51-56. | |
26 | 杨国国, 鲍一丹, 刘子毅 . 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J]. 农业工程学报, 2017, 33(6): 156-162. |
YANG Guoguo, BAO Yidan, LIU Ziyi. Localization and recognition of pests in tea plantation based on image saliency analysis and convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering,2017, 33(6): 156-162. | |
27 | 鲍文霞, 吴德钊, 胡根生, 等. 基于轻量型残差网络的自然场景水稻害虫识别[J]. 农业工程学报, 2021, 37(16): 145-152. |
BAO Wenxia, WU Dezhao, HU Gensheng, et al. Rice pest identification in natural scene based on lightweight residual network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 145-152. | |
28 | 甘雨, 郭庆文, 王春桃, 等. 基于改进 EfficientNet 模型的作物害虫识别[J]. 农业工程学报, 2022, 38(1): 203-211. |
GAN Yu, GUO Qingwen, WANG Chuntao, et al. Recognizing crop pests using an improved EfficientNet model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 203-211. | |
29 | 彭红星, 何慧君, 高宗梅, 等. 基于改进 ShuffleNetV2 模型的荔枝病虫害识别方法[J]. 农业机械学报, 2022, 53(12): 290-300. |
PENG Hongxing, HE Huijun, GAO Zongmei, et al. Litchi diseases and insect pests identification method based on improved ShuffleNetV2 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(12): 290-300. | |
30 | 田有文, 吴伟, 林磊, 等. 基于深度学习与高光谱成像的蓝莓果蝇虫害无损检测[J]. 农业机械学报, 2023, 54(1): 393-401. |
TIAN Youwen, WU Wei, LIN Lei, et al. Nondestructive detection of blueberry fruit fly pests based on deep learning and hyperspectral imaging [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(1): 393-401. | |
31 | 苏宝峰, 沈磊, 陈山, 等. 基于注意力机制的葡萄品种多特征分类方法[J]. 农业机械学报, 2021, 52(11): 226-233, 252. |
SU Baofeng, SHEN Lei, CHEN Shan, et al. Multi features identification of grape cultivars based on attention mechanism [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(11): 226-233, 252. | |
32 | 孟莉莎, 杨贤昭, 刘惠康. 基于CA-EfficientNetV2的蘑菇图像分类算法研究[J]. 激光与光电子学进展, 2022, 59(24): 56-63. |
MENG Lisha, YANG Xianzhao, LIU Huikang. Algorithm on mushroom image classification based on CA-EfficientNetV2 [J]. Progress in laser and optoelectronics, 2022, 59(24): 56-63. | |
33 | 赵立新, 白银光, 何春燕, 等 . 基于双维度注意力机制的西红柿成熟度检测方法[J]. 科学技术与工程, 2023, 23(11): 4571-4578. |
ZHAO Lixin, BAI Yinguang, HE Chunyan, et al. Tomato maturity detection based on two-dimensional attention mechanism [J]. Science Technology and Engineering, 2023, 23(11): 4571-4578. | |
34 | 唐恒翱, 李杭昊, 孙志同, 等. 基于统计纹理残差学习网络的葡萄叶片分类方法[J]. 华中农业大学学报, 2023, 42(3): 169-176. |
TANG Heng’ao, LI Hanghao, SUN Zhitong, et al. Fine-grained classification of grape leaves based on statistical texture residual learning network[J]. Journal of Huazhong Agricultural University, 2023, 42(3):169-176. | |
35 | 朱学岩, 陈锋军, 郑一力, 等. 融合双线性网络和注意力机制的油橄榄品种识别[J]. 农业工程学报, 2023, 39(10): 183-192. |
ZHU Xueyan, CHEN Fengjun, ZHENG Yili, et al. Identification of olive cultivars using bilinear networks and attention mechanisms [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(10): 183-192. | |
36 | 龙燕, 杨智优, 何梦菲. 基于改进YOLOv7的疏果期苹果目标检测方法[J]. 农业工程学报, 2023, 39(14): 191-199. |
LONG Yan, YANG Zhiyou, HE Mengfei. Recognizing apple targets before thinning using improved YOLOv7 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(14): 191-199. | |
37 | 王昱, 姚兴智, 李斌, 等. 基于改进YOLOv7-tiny的甜椒畸形果识别算法[J/OL]. 农业机械学报, 1-16[2023-11-05]. |
WANG Yu, YAO Xingzhi, LI Bin, et al. Malformed sweet pepper fruit identification algorithm based on Improved YOLOv7-tiny [J]. Transactions of the Chinese Society for Agricultural Machinery, 1-16[2023-11-05]. | |
38 | 张宏鸣, 付振宇, 韩文霆, 等. 基于改进YOLO的玉米幼苗株数获取方法[J]. 农业机械学报, 2021, 52(4): 221-229. |
ZHANG Hongming, FU Zhenyu, HAN Wenting, et al. Detection method of maize seedlings number based on improved YOLO [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 221-229. | |
39 | 张日红, 区建爽, 李小敏. 基于改进YOLOv4的轻量化菠萝苗心检测算法[J]. 农业工程学报, 2023, 39(4): 135-143. |
ZHANG Rihong, QU Jianshuang, LI Xiaomin. Lightweight algorithm for pineapple plant center detection based on improved an YOLOv4 model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(4): 135-143. | |
40 | 张万枝, 曾祥, 刘树峰, 等. 基于改进YOLO v5s的马铃薯种薯芽眼检测方法[J].农业机械学报, 2023, 54(9):260-269. |
ZHANG Wanzhi, ZENG Xiang, LIU Shufeng, et al. Detection method of potato seed bud eye based on improved YOLO v5s [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(9): 260-269. | |
41 | 赵辉, 曹宇航, 岳有军, 等. 基于改进DenseNet的田间杂草识别[J]. 农业工程学报, 2021, 37(18): 136-142. |
ZHAO Hui, CAO Yuhang, YUE Youjun, et al. Field weed recognition based on improved DenseNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 136-142. | |
42 | 杨森森, 张昊, 兴陆, 等. 改进 MobileViT 网络识别轻量化田间杂草[J]. 农业工程学报, 2023, 39(9): 152-160. |
YANG Sensen, ZHANG Hao, XING Lu, et al. Light weight recognition of weeds in the field based on improved MobileViT network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(9): 152-160. | |
43 | 饶秀勤, 朱逸航, 张延宁, 等. 基于语义分割的作物垄间导航路径识别[J]. 农业工程学报, 2021, 37(20):179-186. |
RAO Xiuqin, ZHU Yihang, ZHANG Yanning, et al. Navigation path recognition between crop ridges based on semantic segmentation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 179-186. | |
44 | 陈红, 张兆国, 解开婷, 等. 基于Deeplab-MV3的三七垄间导航线提取算法研究[J]. 昆明理工大学学报(自然科学版), 2023, 48(5): 95-106. |
CHEN Hong, ZHANG Zhaoguo, XIE Kaiting, et al. Navigation line extraction algorithm of panax notoginseng filed ridges based on Deeplab-MV3 [J]. Journal of Kunming University of Science and Technology (Natural Science), 2023, 48(5): 95-106. | |
45 | 宋余庆, 杨东川, 徐立, 等. 基于DBSE-Net的大田稻穗图像分割[J]. 农业工程学报, 2022, 38(13): 202-209. |
SONG Yuqing, YANG Dongchuan, XU Lizhang, et al. Segmenting field rice panicle images using DBSE-Net [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(13): 202-209. | |
46 | 朱德利, 余茂生, 梁明飞. 基于 SwinT-YOLACT 的玉米果穗实时实例分割[J]. 农业工程学报, 2023, 39(14): 164-172. |
ZHU Deli, YU Maosheng, LIANG Mingfei. Real-time instance segmentation of maize ears using SwinT-YOLACT [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(14): 164-172. |
[1] | 王红君, 季晓宇, 赵辉, 岳有军. SENet优化的Deeplabv3+淡水鱼体语义分割*[J]. 智能化农业装备学报(中英文), 2021, 2(1): 36-43. |
[2] | 王国伟, 刘嘉欣. 基于卷积神经网络的玉米病害识别方法研究*[J]. 智能化农业装备学报(中英文), 2021, 2(1): 64-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||