1 |
江用文, 陈霄雄, 朱建淼, 等. 中国茶产业2020年发展规模分析[J]. 茶叶科学, 2011, 31(3): 273-282.
|
|
JIANG Yongwen, CHEN Xiaoxiong, ZHU Jianmiao, et al. Analysis on development scale of Chinese tea industry in 2020 [J]. Journal of Tea Science, 2011, 31(3): 273-282.
|
2 |
TIAN L, HE Y. Study on the cross-cultural marketing strategies of Chinese tea enterprises [J]. Academic Journal of Business and Management, 2022, 4(2): 38-41.
|
3 |
李宗洙. 我国茶产业贸易发展研究:模式、问题及对策建议[J]. 商业经济研究, 2021(24): 186-189.
|
4 |
韩余, 宋志禹, 陈巧敏. 4CJ-1200F智能采茶机设计与试验[J]. 智能化农业装备学报(中英文), 2022, 3(1): 1-6.
|
|
HAN Yu, SONG Zhiyu, CHEN Qiaomin. Design and experiment of 4CJ-1200F intelligent tea plucking machine [J]. Journal of Intelligent Agricultural Mechanization, 2022, 3(1): 1-6.
|
5 |
张浩, 陈勇, 汪巍, 等. 基于主动计算机视觉的茶叶采摘定位技术[J]. 农业机械学报, 2014, 45(9): 61-65.
|
|
ZHANG Hao, CHEN Yong, WANG Wei, et al. Positioning method for tea picking using active computer vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9): 61-65.
|
6 |
许宝阳, 高延峰. 基于Faster-RCNN深度学习的茶叶嫩芽多维度识别及其性能分析[J]. 农业装备与车辆工程, 2023, 61(2): 19-24.
|
|
XU Baoyang, GAO Yanfeng. Tea-buds multi-dimensional recognition with Faster-RCNN deep learning method and its performance analysis [J]. Agricultural Equipment & Vehicle Engineering, 2023, 61(2): 19-24.
|
7 |
SHAO P D, WU M H, WANG X W, et al. Research on the tea bud recognition based on improved k-means algorithm [C]// MATEC Web of Conferences. EDP Sciences, 2018, 232: 03050.
|
8 |
YAN C, CHEN Z, LI Z, et al. Tea sprout picking point identification based on improved DeepLabV3+[J]. Agriculture, 2022, 12(10): 1594.
|
9 |
ZHANG F Y, SUN H W, XIE S, et al. A tea bud segmentation,detection and picking point localization based on the MDY7-3PTB model [J]. Frontiers in Plant Science, 2023: 1199473-1199473.
|
10 |
CHENG Y F, LI Y, ZHANG R T. Locating tea bud keypoints by keypoint detection method based on convolutional neural network [J]. Sustainability, 2023, 15(8): 6898.
|
11 |
LI J, LI J H, ZHAO X, et al. Lightweight detection networks for tea bud on complex agricultural environment via improved YOLO v4 [J]. Computers and Electronics in Agriculture, 2023, 211(C): 107955.
|
12 |
龙樟, 姜倩, 王健, 等. 茶叶嫩芽视觉识别与采摘点定位方法研究[J]. 传感器与微系统, 2022, 41(2): 39-41, 45.
|
|
LONG Zhang, JIANG Qian, WANG Jian, et al. Research on method of tea flushes vision recognition and picking point localization [J]. Transducer and Microsystem Technologies, 2022, 41(2): 39-41, 45.
|
13 |
杨福增, 杨亮亮, 田艳娜, 等. 基于颜色和形状特征的茶叶嫩芽识别方法[J]. 农业机械学报, 2009, 40(S1): 119-123.
|
|
YANG Fuzeng, YANG Liangliang, TIAN Yanna, et al. Recognition of the tea sprout based on color and shape features [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(S1): 119-123.
|
14 |
王梦妮, 顾寄南, 王化佳, 等. 基于改进YOLOv5s模型的茶叶嫩芽识别方法[J]. 农业工程学报, 2023, 39(12): 150-157.
|
|
WANG Mengni, GU Ji'nan, WANG Huajia, et al. Method for identifying tea buds based on improved YOLOv5s model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(12): 150-157.
|
15 |
俞龙, 黄楚斌, 唐劲驰, 等. 基于YOLOX改进模型的茶叶嫩芽识别方法[J]. 广东农业科学, 2022, 49(7): 49-56.
|
|
YU Long, HUANG Chubin, TANG Jinchi, et al. Tea bud recognition method based on improved YOLOX model [J]. Guangdong Agricultural Sciences, 2022, 49(7): 49-56.
|
16 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2023: 7464-7475.
|
17 |
郝紫霄, 王琦. 基于YOLO-v7的无人机航拍图像小目标检测改进算法[J]. 软件导刊, 2024(1): 167-172.
|
|
HAO Zixiao, WANG Qi. Enhanced algorithm for small target detection in UAV aerial images based on YOLO-v7 [J]. Software Guide, 2024(1): 167-172.
|
18 |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module [C]// Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.
|
19 |
胡和平, 吴明晖, 洪孔林, 等. 基于改进YOLOv5s的茶叶嫩芽分级识别方法[J]. 江西农业大学学报, 2023, 45(5): 1261-1272.
|
|
HU Heping, WU Minghui, HONG Konglin, et al. Classification and recognition method for tea buds based on improved YOLOv5s [J]. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(5): 1261-1272.
|
20 |
SUNKARA R, LUO T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small objects [C]// Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer Nature Switzerland, 2022: 443-459.
|
21 |
ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression [J]. Neurocomputing, 2022, 506: 146-157.
|