[1] Pfrunder A, Borges P V K, Romero A R, et al. Real-time autonomous ground vehicle navigation in heterogeneous environments using a 3D LiDAR [C]. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. [2] 周俊, 胡晨. 密植果园作业机器人行间定位方法[J]. 农业机械学报, 2015, 46(11): 22-28. Zhou Jun, Hu Chen. Inter-row localization method for agricultural robot working in close planting orchard [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 22-28. [3] Sun R, Yang Y, Chiang K W, et al. Robust IMU/GPS/VO integration for vehicle navigation in GNSS degraded urban areas [J]. IEEE Sensors Journal, 2020(99): 1. [4] Tong Q, Peiliang L, Shaojie S. VINS-Mono: A robust and versatile monocular visual-inertial state estimator [J]. IEEE Transactions on Robotics, 2017(99): 1-17. [5] Wang R, Schwrer M, Cremers D. Stereo DSO: Large-scale direct sparse visual odometry with stereo cameras [C]. 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017. [6] Zhang J, Singh S. Low-drift and real-time lidar odometry and mapping [J]. Autonomous Robots, 2017, 41(2): 401-416. [7] Ye H, Chen Y, Liu M. Tightly coupled 3D lidar inertial odometry and mapping [C]. 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019. [8] Egger P, Borges P V K, Catt G, et al. PoseMap: Lifelong, multi-environment 3d lidar localization [C]. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. [9] Quigley M, Conley K, Gerkey B P, et al. ROS: An open-source robot operating system [J]. ICRA Workshop on Open Source Software, 2009. [10] Plessen M G. Coupling of crop assignment and vehicle routing for harvest planning in agriculture [J]. Artificial Intelligence in Agriculture, 2019, 2(C): 99-109. [11] Shan T, Englot B. LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain [C]. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019. [12] Shafaei S M, Loghavi M, Kamgar S. Reliable execution of a robust soft computing workplace found on multiple neuro-fuzzy inference systems coupled with multiple nonlinear equations for exhaustive perception of tractor-implement performance in plowing process [J]. Artificial Intelligence in Agriculture, 2019, 2: 38-84. [13] Forster C, Carlone L, Dellaert F, et al. On-Manifold preintegration for real-time visual-inertial odometry [J]. IEEE transactions on robotics, 2017, 33(1): 1-21. [14] Qin C, Ye H, Pranata C E, et al. R-LINS: A robocentric lidar-inertial state estimator for robust and efficient navigation [D]. New York: Cornell University, 2019. [15] Zhang J, Singh S. LOAM: Lidar odometry and mapping in real-time [C]. Robotics: Science and Systems Conference, 2014. [16] Segal A, Hhnel D, Thrun S. Generalized-ICP[C]. Robotics: Science and Systems V, University of Washington, 2009. [17] Kaess, Johannsson, Roberts, et al. iSAM2: Incremental smoothing and mapping using the Bayes tree [J]. Int J Robot Res, 2012, 31(2): 216-235. [18] Zheng L, Zhu Y, Xue B, et al. Low-cost gps-aided lidar state estimation and map building [C]. 2019 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2019. [19] Himmelsbach M, Hundelshausen F V, Wuensche H J. Fast segmentation of 3D point clouds for ground vehicles [C]. Intelligent Vehicles Symposium. IEEE, 2010. [20] 李海芸, 曹亚磊, 董楸煌, 等. 农业机器人实验平台构建与探索[J]. 中国农机化学报, 2019, 40(1): 210-214. Li Haiyun, Cao Yalei, Dong Qiuhuang, et al. Construction and exploration of experimental platform for agricultural robot [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(1): 210-214. [21] 于燕, 李宁. 基于北斗和激光雷达的机器人导航控制方法研究[J]. 中国农机化学报, 2019, 40(8): 165-170. Yu Yan, Li Ning. Research on navigation control of robot based on Beidou and lidar [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(8): 165-170. |