[1] 胡静涛, 高雷, 白晓平, 等. 农业机械自动导航技术研究进展[J]. 农业工程学报, 2015, 31(10): 1-10.
Hu Jingtao, Gao Lei, Bai Xiaoping, et al. Review of research on automatic guidance of agricultural vehicles [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 1-10.
[2] 刘洋成, 耿端阳, 兰玉彬, 等. 基于自动导航的农业装备全覆盖路径规划研究进展[J]. 中国农机化学报, 2020, 41(11): 185-192.
Liu Yangcheng, Geng Duanyang, Lan Yubin, et al. Research progress of agricultural equipment full coverage path planning based on automatic navigation [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(11): 185-192.
[3] 周航, 杜志龙, 武占元, 等. 机器视觉技术在现代农业装备领域的应用进展[J]. 中国农机化学报, 2017, 38(11): 86-92.
Zhou Hang, Du Zhilong, Wu Zhanyuan, et al. Application progress of machine vision technology in the field of modern agricultural equipment [J]. Journal of Chinese Agricultural Mechanization, 2017, 38(11): 86-92.
[4] Wang N, Yeung D Y. Learning a deep compact image representation for visual tracking [J]. Advances in Neural Information Processing Systems, 2013.
[5] 张树刚. 基于超声波的移动机器人局部避障算法及应用[D]. 哈尔滨: 哈尔滨工业大学, 2013.
Zhang Shugang. Local obstacle avoidance algorithm and application of mobile robot based on ultrasonic [D]. Harbin: Harbin Institute of Technology, 2013.
[6] 宋怀波, 何东健, 辛湘俊. 基于机器视觉的非结构化道路检测与障碍物识别方法[J]. 农业工程学报, 2011, 27(6): 225-230.
Song Huaibo, He Dongjian, Xin Xiangjun. Unstructured road detection and obstacle recognition algorithm based on machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(6): 225-230.
[7] Liu L, Cui J, Li J. Obstacle detection and classification in dynamical background [J]. Aasri Procedia, 2012, 1: 435-440.
[8] Christiansen P, Nielsen L N, Steen K A, et al. DeepAnomaly: Combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field [J]. Sensors, 2016, 16(11): 1904.
[9] 黄铝文. 苹果采摘机器人视觉识别与路径规划方法研究[D]. 杨凌: 西北农林科技大学, 2013.
Huang Lvwen. Approach of visual identification and path planning for applepickingrobot [D]. Yangling: Northwest A & F University, 2013.
[10] AlKaff A, García F, Martín D, et al. Obstacle detection and avoidance system based on monocular camera and size expansion algorithm for UAVs [J]. Sensors, 2017, 17(5): 1061.
[11] Campos Y, Sossa H, Pajares G. Spatiotemporal analysis for obstacle detection in agricultural videos [J]. Applied Soft Computing, 2016, 45: 86-97.
[12] 程嘉煜. 基于机器视觉的农业机器人运动障碍检测及避障策略研究[D]. 南京: 南京农业大学, 2011.
Cheng Jiayu. Research on moving obstacle detection and avoidance strategy for agricultural robot based on machine vision [D]. Nanjing: Nanjing Agricultural University, 2011.
[13] 钟鹏飞. 基于机器视觉的非结构化道路识别与障碍物检测研究[D]. 广州: 华南农业大学, 2016.
Zhong Pengfei. Study on unstructured road recognition and obstacle detection based on machine vision [D]. Guangzhou: South China Agricultural University, 2016.
[14] Gharani P, Karimi H A. Contextaware obstacle detection for navigation by visually impaired [J]. Image and Vision Computing, 2017, 64: 103-115.
[15] 侯伟. 基于双目的前驶障碍物识别方法与应用研究[D]. 合肥: 合肥工业大学, 2015.
Hou Wei. Research on the method of the front obstacle recognition based on binocular and its application[D]. Hefei: Hefei University of Technology, 2015.
[16] 周俊, 程嘉煜. 基于机器视觉的农业机器人运动障碍目标检测[J]. 农业机械学报, 2011, 42(8): 154-158.
Zhou Jun, Cheng Jiayu. Moving obstacle detection based on machine vision for agricultural mobile robot [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(8): 154-158.
[17] 冉冉. 基于单目视觉的移动机器人目标识别及抓取系统研究[D]. 北京: 北京交通大学, 2010.
Ran Ran. Research on system of object recognition and pickup for mobile robot based on monocular vision [D]. Beijing: Beijing Jiaotong University, 2010.
[18] Lee T J, Yi D H, Cho D I. A monocular vision sensorbased obstacle detection algorithm for autonomous robots [J]. Sensors, 2016, 16(3): 311.
[19] 陈伟. 基于双目视觉的智能车辆道路识别与路径规划研究[D]. 西安: 西安理工大学, 2009.
Chen Wei. Research of road identification and obstacle detection for intelligent vehicle based on binocular vision [D]. Xian: Xian University of Technology, 2009.
[20] Hu Z, Uchimura K. UVdisparity: An efficient algorithm for stereovision based scene analysis [C]. IEEE Proceedings. Intelligent Vehicles Symposium, 2005. IEEE, 2005: 48-54.
[21] Zhang Z, Xu H, Chao Z, et al. A novel vehicle reversing speed control based on obstacle detection and sparse representation [J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 16(3): 1321-1334.
[22] 周自维. 基于立体视觉的环境构建及机器人路径规划研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
Zhou Ziwei. Research on environment construction based on binocular vision system and path planning of a robot [D]. Harbin: Harbin Institute of Technology, 2014.
[23] 石金进. 基于视觉的智能车辆道路识别与障碍物检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
Shi Jinjin. Research on vision based road recognition and obstacle detection for intelligent vehicles [D]. Harbin: Harbin Institute of Technology, 2016.
[24] Neethu S, Vinuchackravarthy S. Object detection using binocular vision [C]. 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 2016: 1558-1564.
[25] 苟琴. 基于双目视觉的未知环境下农田障碍物检测技术研究[D]. 杨凌: 西北农林科技大学, 2013.
Gou Qin. Research on obstacle detection in unknown farmland based on binocular vision [D]. Yangling: Northwest A & F University, 2013.
[26] 姬长英, 沈子尧, 顾宝兴, 等. 基于点云图的农业导航中障碍物检测方法[J]. 农业工程学报, 2015, 31(7): 173-179.
Ji Changying, Shen Ziyao, Gu Baoxing, et al. Obstacle detection based on point clouds in application of agricultural navigation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(7): 173-179.
[27] Huang Y, Young K. Binocular image sequence analysis: Integration of stereo disparity and optic flow for improved obstacle detection and tracking [J]. EURASIP Journal on Advances in Signal Processing, 2008, 1-10.
[28] Wang X, Fu W, Chen W. Detection of obstacle based on nocular vision [C]. 2010 International Conference on Intelligent Computation Technology and Automation. IEEE, 2010, 2: 71-74.
[29] Li Y, Shen X, Bei S. Realtime tracking method for moving target based on an improved Camshift algorithm [C]. 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC). IEEE, 2011: 978-981.
[30] Zhao M, Han B. The research of autonomous obstacle avoidance of mobile robot based on multisensor integration [C]. Advanced Sensor Systems and Applications VII. International Society for Optics and Photonics, 2017, 10025: 1002514.
[31] Chen Z, Luo X, Dai B. Design of obstacle avoidance system for microUAV based on binocular vision [C]. 2017 International Conference on Industrial InformaticsComputing Technology, Intelligent Technology, Industrial Information Integration (ICIICII). IEEE, 2017: 67-70.
[32] 邓勇军. 越障全位置自主焊接机器人视觉传感系统研究[D]. 上海: 上海交通大学, 2012.
Deng Yongjun. Study of vision sensing system for allposition autonomous welding robot with passing obstacles capability [D]. Shanghai: Shanghai Jiao Tong University, 2012.
[33] 傅豪. 基于装配机器人双目视觉系统的障碍物三维重建研究[D]. 西安: 西安理工大学, 2018.
Fu Hao. Research on 3D reconstruction of binocular vision system based on assembly robot [D]. Xian: Xian University of Technology, 2018.
[34] 佘宏杰. 基于视觉的AGV导航控制与障碍物检测研究[D]. 杭州: 浙江工业大学, 2016.
She Hongjie. The AGV guidance control and obstacle detection based on vision [D]. Hangzhou: Zhejiang University of Technology, 2016.
[35] 杜明芳. 基于视觉的自主车道路环境理解技术研究[D]. 北京: 北京理工大学, 2015.
Du Mingfang. Research on visionbased road environment understanding technology for autonomous vehicles [D]. Beijing: Beijing Institute of Technology, 2015.
[36] 李景彬, 陈兵旗, 刘阳. 棉花铺膜播种机导航路线图像检测方法[J]. 农业机械学报, 2014, 45(1): 40-45.
Li Jingbin, Chen Bingqi, Liu Yang. Image detection method of navigation route of cotton plastic film mulch planter [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 40-45.
[37] Ross P, English A, Ball D, et al. Noveltybased visual obstacle detection in agriculture [C]. 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 1699-1705.
[38] Ball D, Upcroft B, Wyeth G, et al. Visionbased obstacle detection and navigation for an agricultural robot [J]. Journal of Field Robotics, 2016, 33(8): 1107-1130.
[39] Hu J S, Juan C W, Wang J J. A spatialcolor meanshift object tracking algorithm with scale and orientation estimation [J]. Pattern Recognition Letters, 2008, 29(16): 2165-2173.
[40] Sun H, Zou H, Zhou S, et al. Surrounding moving obstacle detection for autonomous driving using stereo vision [J]. International Journal of Advanced Robotic Systems, 2013, 10(6): 261.
[41] Reid D. An algorithm for tracking multiple targets [J]. IEEE Transactions on Automatic Control, 1979, 24(6): 843-854.
[42] Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking [J]. International Journal of Computer Vision, 2008, 77(1): 125-141.
[43] Dong W, Chang F, Zhao Z. Visual tracking with multifeature joint sparse representation [J]. Journal of Electronic Imaging, 2015, 24(1): 013006.
[44] Huang H T, Bi D Y, Hou Z Q, et al. Research of sparse representationbased visual object tracking: A survey [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2018, 44(10):1747-1763.
[45] Hare S, Golodetz S, Saffari A, et al. Struck: Structured output tracking with kernels [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(10): 2096-2109.
[46] Zhang K, Song H. Realtime visual tracking via online weighted multiple instance learning [J]. Pattern Recognition, 2013, 46(1): 397-411.
[47] Kalal Z, Mikolajczyk K, Matas J. Trackinglearningdetection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(7): 1409-1422.
[48] Henriques J F, Caseiro R, Martins P, et al. Highspeed tracking with kernelized correlation filters [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3): 583-596.
[49] Danelljan M, Hger G, Khan F S, et al. Discriminative scale space tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(8): 1561-1575.
[50] Danelljan M, Hager G, Shahbaz Khan F, et al. Learning spatially regularized correlation filters for visual tracking [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 4310-4318.
[51] Valmadre J, Bertinetto L, Henriques J, et al. Endtoend representation learning for correlation filter based tracking [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2805-2813.
[52] Dairi A, Harrou F, Senouci M, et al. Unsupervised obstacle detection in driving environments using deeplearningbased stereovision [J]. Robotics and Autonomous Systems, 2018, 100: 287-301.
[53] 张治国. 前方道路行人检测和距离估计研究[D]. 武汉: 华中科技大学, 2017.
Zhang Zhiguo. Research on pedestrian detection and depth estimation of road scene [D]. Wuhan: Huazhong University of Science & Technology, 2017.
[54] 杨娟娟, 高晓阳, 李红岭, 等. 基于机器视觉的无人机避障系统研究[J]. 中国农机化学报, 2020, 41(2): 155-160.
Yang Juanjuan, Gao Xiaoyang, Li Hongling, et al. Research on UAV obstacle avoidance system based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 155-160.
[55] 耿乾, 毛鹏军, 李鹏举, 等. 障碍物分类识别的果园机器人避障方法研究[J]. 中国农机化学报, 2020, 41(8): 170-177.
Geng Qian, Mao Pengjun, Li Pengju, et al. Research on obstacle avoidance method of orchard robot based on obstacle classification [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(8): 170-177.
|