English

智能化农业装备学报(中英文) ›› 2023, Vol. 4 ›› Issue (2): 63-70.DOI: 10.12398/j.issn.2096-7217.2023.02.007

• • 上一篇    

基于机器视觉的蒜种智能定向技术综述

程振宋井玲*徐洪岑张明亮   

  1. 山东理工大学农业工程与食品科学学院,山东淄博,255049
  • 出版日期:2023-05-15 发布日期:2023-05-15
  • 通讯作者: 宋井玲,女,1964年生,吉林伊通人,硕士,教授,硕导;研究方向为农业机械化工程。E-mail: songjingling@tom.com
  • 作者简介:程振,男,1995年生,山东德州人,硕士研究生;研究方向为农业装备及其自动化。E-mail: 1131296975@qq.com
  • 基金资助:
    山东省自然科学基金面上项目(ZR2022ME103);济南市2022年农业应用技术创新项目(CX202216)

Overview of intelligent orientation technology of garlic seed based on machine vision

CHENG Zhen, SONG Jingling*, XU Hongcen, ZHANG Mingliang   

  1. School of Agricultural and Food Engineering, Shandong University of Technology, Zibo 255000, China
  • Online:2023-05-15 Published:2023-05-15

摘要: 大蒜种植时需满足鳞芽向上、直立种植的农艺要求,因此蒜种的定向是实现大蒜机械化种植的关键,基于机器视觉的蒜种定向技术是解决一般大蒜品种的蒜种定向问题的有效方法,相关研究集中在图像识别蒜种芽尖的算法和识别后的控制调向技术上。目前对蒜种鳞芽进行图像识别的算法有多种,识别正确率最高可达99%,主要以采集静态的蒜种图像作为研究对象,考虑实际工作环境中运动的蒜种、光照、灰尘等对采集蒜种图像带来的影响,对采集到不同方位蒜种图像的识别结果分析,蒜种间形状特征差异对识别结果的影响研究以及多角度采集蒜种图像来综合识别蒜种芽尖位置的研究较少。目前对图像识别后的控制调向技术的研究,调向机构的运动均为间歇运动,且在图像识别后执行,蒜种定向作业效率偏低,难以适应大蒜播种机的作业速度。目前为止还没有基于机器视觉的蒜种智能定向技术大蒜播种机产品出现,现有技术的实用化差距主要表现在单粒取种、图像识别、调向机构及控制这些关键技术的融合度不够,因此随着3个技术有机结合的创新研究,使鳞芽识别和调向并行,并在蒜种连续运动的状态下完成定向,在简化鳞芽识别算法以及调向机构的运动的同时,提高蒜种定向效率。本文可为该项技术的实际应用研究提供参考,以推动大蒜生产机械化、智能化发展进程。

关键词: 大蒜种植, 机器视觉, 蒜种定向, 蒜种鳞芽识别算法

Abstract: Garlic planting needs to meet the agronomic requirements of scale-bud up and vertical planting, so the orientation of garlic seed is the key to realize garlic mechanization planting. The orientation technology of garlic seed based on machine vision is an effective method to solve the orientation problem of general garlic varieties. Relevant research focuses on the algorithm of image recognition of garlic seed tips and the control orientation technology after recognition. At present, there are a variety of algorithms for garlic scale-bud image recognition, and the recognition accuracy is up to more than 99%. The static garlic seed image collection is mainly taken as the research object. Considering the impact of moving garlic seeds, light, dust, etc. In the actual working environment on the collection of garlic images, there are not many studies on analysis of the recognition results of garlic images collected in different orientations, the impact of shape feature differences between garlic species on recognition results and comprehensive identification of garlic bud tip positions by collecting images of garlic seeds from multiple angles.  At present, the research on the control orientation technology after image recognition shows that the motion of the orientation mechanism is intermittent and executed after image recognition. The efficiency of garlic seed orientation operation is low and it is difficult to adapt to the operation speed of garlic planter. So far, there has been no garlic seed intelligent directional technology based on machine vision garlic seed seeder product. The practical gap of existing technologies is mainly reflected in the insufficient integration of the key technologies of single seed selection, image recognition, orientation mechanism and control. Therefore, with the innovative research of the organic combination of the three technologies, the scale-bud identification and orientation are parallel. The orientation of garlic seeds was achieved under the state of continuous motion. The orientation efficiency of garlic seeds was improved while the scale-bud recognition algorithm and the motion of the orientation mechanism were simplified. This paper can provide reference for the practical application of this technology, so as to promote the mechanization and intelligent development of garlic production.

Key words: Garlic cultivation, Machine vision, Garlic orientation, Identification algorithm of garlic seed scale bud

中图分类号: