智能化农业装备学报(中英文) ›› 2024, Vol. 5 ›› Issue (4): 24-38.DOI: 10.12398/j.issn.2096-7217.2024.04.002
收稿日期:
2024-05-13
修回日期:
2024-06-28
出版日期:
2024-11-15
发布日期:
2024-11-15
通讯作者:
吴敏,女,1982年生,辽宁沈阳人,博士,副教授;研究方向为植物蛋白、农产品加工。E-mail: minwu@cau.edu.cn
作者简介:
徐辉煌,男,1998年生,河南驻马店人,博士研究生;研究方向为花类中药材加工。E-mail: xhhhenan@163.com
基金资助:
XU Huihuang1,2(), WU Min1,2(), WANG Menglu1,2
Received:
2024-05-13
Revised:
2024-06-28
Online:
2024-11-15
Published:
2024-11-15
Contact:
WU Min
摘要:
外观品质是评价干燥花质量的重要指标。为了实现对干燥过程中菊花外观品质的快速无损检测,本研究将计算机视觉技术应用于菊花的红外辅助热风干燥过程中,基于Python语言开发了一种图像处理算法来获取在不同温度下(35 ℃,50 ℃和65 ℃)的干燥过程中菊花花瓣和花蕊表面收缩率和色泽参数的变化信息,并作为外观品质的评价指标,以此实现对干燥过程的精准控制。干燥动力学研究表明:菊花的干燥过程中始终处于降速干燥阶段,且干燥温度的升高导致了干燥时间的显著(p<0.05)缩短和干燥速率的显著升高。基于平方确定系数(R2)、残差平方和(RSS)、均方误差(MSE)值评估了常用的薄层干燥数学模型与试验数据的拟合程度,发现Henderson and Pabis模型、Page模型、Lewis模型与试验数据拟合度更高,能更好地描述菊花的干燥过程。此外,基于图像处理获取的不同干燥阶段菊花的表面收缩率及亮度值(L*)、红/绿值(a*)和黄/蓝值(b*)发现菊花形态和色泽的变化取决于干燥温度和干燥时间的共同作用,更低的干燥温度和更短的干燥时间更有利于抑制菊花在干燥过程的外观品质的劣变。进一步对零阶、一阶和一阶分数模型预测的收缩率和色泽(L*、a*和b*)值与试验数据进行线性回归分析,发现一阶分数模型能更为精准地预测菊花在干燥过程中收缩率以及色泽的变化规律。
中图分类号:
徐辉煌, 吴敏, 王梦露. 基于图像处理的菊花收缩率及色泽变化研究[J]. 智能化农业装备学报(中英文), 2024, 5(4): 24-38.
XU Huihuang, WU Min, WANG Menglu. Study on the kinetics of shrinkage and color changes of chrysanthemum based on image processing[J]. Journal of Intelligent Agricultural Mechanization, 2024, 5(4): 24-38.
模型名称 | 表达式 |
---|---|
Lewis model | MR=exp(-kt) |
Page model | MR=exp(-ktn ) |
Henderson and Pabis model | MR=aexp(-kt) |
Wang and Singh model | MR=1+at+bt2 |
表1 四种常用的农产品干燥模型
Table 1 Four commonly used mathematical models for drying agricultural products
模型名称 | 表达式 |
---|---|
Lewis model | MR=exp(-kt) |
Page model | MR=exp(-ktn ) |
Henderson and Pabis model | MR=aexp(-kt) |
Wang and Singh model | MR=1+at+bt2 |
模型名称 | 干燥温度/℃ | 模型参数 | RSS | MSE | R2 |
---|---|---|---|---|---|
Lewis MR=exp(-kt) | 35 | k=0.001 3 | 8.06×10-3 | 1.42×10-4 | 0.998 |
50 | k=0.007 3 | 1.30×10-2 | 7.23×10-4 | 0.992 7 | |
65 | k=0.012 7 | 3.33×10-3 | 2.78×10-4 | 0.997 1 | |
Page MR=exp(-ktn ) | 35 | k=0.001 5,n=0.972 2 | 7.00×10-3 | 1.25×10-4 | 0.998 2 |
50 | k=0.006 5,n=1.023 4 | 1.27×10-2 | 7.48×10-4 | 0.992 5 | |
65 | k=0.011 7,n=1.018 5 | 3.21×10-3 | 2.92×10-4 | 0.996 9 | |
Henderson and Pabis MR=aexp(-kt) | 35 | k=0.001 2,a=0.985 6 | 6.11×10-3 | 1.09×10-4 | 0.998 5 |
50 | k=0.007 6,a=1.029 1 | 1.11×10-2 | 6.52×10-4 | 0.993 4 | |
65 | k=0.012 7,a=1.002 5 | 3.32×10-3 | 3.02×10-4 | 0.996 8 | |
Wang and Singh MR=1+at+bt2 | 35 | a=-0.001 1,b=3.51×10-7 | 2.08×10-2 | 3.71×10-4 | 0.994 8 |
50 | a=-0.005 6,b=8.25×10-6 | 4.57×10-2 | 2.69×10-3 | 0.972 8 | |
65 | a=-0.009 5,b=2.33×10-5 | 2.07×10-2 | 1.88×10-3 | 0.980 1 |
表2 不同干燥温度的试验数据与数学模型拟合及相关性检验结果
Table 2 Experimental data of different drying temperatures and mathematical model fitting and correlation test results
模型名称 | 干燥温度/℃ | 模型参数 | RSS | MSE | R2 |
---|---|---|---|---|---|
Lewis MR=exp(-kt) | 35 | k=0.001 3 | 8.06×10-3 | 1.42×10-4 | 0.998 |
50 | k=0.007 3 | 1.30×10-2 | 7.23×10-4 | 0.992 7 | |
65 | k=0.012 7 | 3.33×10-3 | 2.78×10-4 | 0.997 1 | |
Page MR=exp(-ktn ) | 35 | k=0.001 5,n=0.972 2 | 7.00×10-3 | 1.25×10-4 | 0.998 2 |
50 | k=0.006 5,n=1.023 4 | 1.27×10-2 | 7.48×10-4 | 0.992 5 | |
65 | k=0.011 7,n=1.018 5 | 3.21×10-3 | 2.92×10-4 | 0.996 9 | |
Henderson and Pabis MR=aexp(-kt) | 35 | k=0.001 2,a=0.985 6 | 6.11×10-3 | 1.09×10-4 | 0.998 5 |
50 | k=0.007 6,a=1.029 1 | 1.11×10-2 | 6.52×10-4 | 0.993 4 | |
65 | k=0.012 7,a=1.002 5 | 3.32×10-3 | 3.02×10-4 | 0.996 8 | |
Wang and Singh MR=1+at+bt2 | 35 | a=-0.001 1,b=3.51×10-7 | 2.08×10-2 | 3.71×10-4 | 0.994 8 |
50 | a=-0.005 6,b=8.25×10-6 | 4.57×10-2 | 2.69×10-3 | 0.972 8 | |
65 | a=-0.009 5,b=2.33×10-5 | 2.07×10-2 | 1.88×10-3 | 0.980 1 |
干燥温度/℃ | 模型 | P0 | k | R2 |
---|---|---|---|---|
35 | P=Po + kt | 0.07 | 0.000 3 | 0.937 5 |
P=Po exp (-kt) | 0.10 | 0.028 9 | 0.868 9 | |
50 | P=Po + kt | 0.19 | 0.001 2 | 0.757 1 |
P=Po exp (-kt) | 0.25 | 0.002 4 | 0.635 4 | |
65 | P=Po + kt | 0.17 | 0.001 7 | 0.772 5 |
P=Po exp (-kt) | 0.21 | 0.003 7 | 0.754 5 |
表3 零阶、一阶模型与不同干燥温度下收缩率值的拟合结果
Table 3 Fitting of zero-order and first-order models to shrinkage rate values at different drying temperatures
干燥温度/℃ | 模型 | P0 | k | R2 |
---|---|---|---|---|
35 | P=Po + kt | 0.07 | 0.000 3 | 0.937 5 |
P=Po exp (-kt) | 0.10 | 0.028 9 | 0.868 9 | |
50 | P=Po + kt | 0.19 | 0.001 2 | 0.757 1 |
P=Po exp (-kt) | 0.25 | 0.002 4 | 0.635 4 | |
65 | P=Po + kt | 0.17 | 0.001 7 | 0.772 5 |
P=Po exp (-kt) | 0.21 | 0.003 7 | 0.754 5 |
干燥温度/℃ | 模型 | C0 | Cf | k | R2 |
---|---|---|---|---|---|
35 | C=Co+kt | 58.31 | - | -0.000 8 | 0.91 |
C=Coexp(-kt) | 58.31 | - | 0.000 01 | 0.909 9 | |
58.31 | 168.31 | 0.000 003 6 | 0.908 3 | ||
50 | C=Co+kt | 56.94 | - | -0.006 8 | 0.956 2 |
C=Coexp(-kt) | 56.95 | - | 0.000 1 | 0.957 | |
54.41 | 49.62 | 0.001 1 | 0.957 7 | ||
65 | C=Co+kt | 57.05 | - | -0.015 3 | 0.880 4 |
C=Coexp(-kt) | 57.07 | - | 0.000 2 | 0.885 7 | |
53.77 | 53.27 | 0.008 2 | 0.953 6 |
表4 零阶、一阶和一阶分数模型与不同干燥温度下L*值的拟合结果
Table 4 Fitting of zore-order, first-order and first-order fraction models to L* values at different drying temperatures
干燥温度/℃ | 模型 | C0 | Cf | k | R2 |
---|---|---|---|---|---|
35 | C=Co+kt | 58.31 | - | -0.000 8 | 0.91 |
C=Coexp(-kt) | 58.31 | - | 0.000 01 | 0.909 9 | |
58.31 | 168.31 | 0.000 003 6 | 0.908 3 | ||
50 | C=Co+kt | 56.94 | - | -0.006 8 | 0.956 2 |
C=Coexp(-kt) | 56.95 | - | 0.000 1 | 0.957 | |
54.41 | 49.62 | 0.001 1 | 0.957 7 | ||
65 | C=Co+kt | 57.05 | - | -0.015 3 | 0.880 4 |
C=Coexp(-kt) | 57.07 | - | 0.000 2 | 0.885 7 | |
53.77 | 53.27 | 0.008 2 | 0.953 6 |
干燥温度/℃ | 模型 | C0 | Cf | k | R2 |
---|---|---|---|---|---|
35 | -0.14 | - | 0.000 1 | 0.716 9 | |
-0.14 | - | 0.000 5 | 0.712 4 | ||
-0.14 | 0.89 | 0.000 1 | 0.711 8 | ||
50 | -0.17 | - | 0.000 6 | 0.957 8 | |
0.000 000 32 | - | -0.030 6 | 0.531 7 | ||
-0.16 | -0.65 | -0.001 | 0.952 7 | ||
65 | -0.01 | - | 0.001 6 | 0.910 1 | |
0.06 | - | -0.007 9 | 0.803 9 | ||
-0.01 | -61.24 | -0.000 03 | 0.901 |
表5 零阶、一阶和一阶分数模型与不同干燥温度下a*值的拟合结果
Table 5 Fitting of zero-order, first-order and first-order fraction models to a* values at different drying temperatures
干燥温度/℃ | 模型 | C0 | Cf | k | R2 |
---|---|---|---|---|---|
35 | -0.14 | - | 0.000 1 | 0.716 9 | |
-0.14 | - | 0.000 5 | 0.712 4 | ||
-0.14 | 0.89 | 0.000 1 | 0.711 8 | ||
50 | -0.17 | - | 0.000 6 | 0.957 8 | |
0.000 000 32 | - | -0.030 6 | 0.531 7 | ||
-0.16 | -0.65 | -0.001 | 0.952 7 | ||
65 | -0.01 | - | 0.001 6 | 0.910 1 | |
0.06 | - | -0.007 9 | 0.803 9 | ||
-0.01 | -61.24 | -0.000 03 | 0.901 |
干燥温度/℃ | 模型 | C0 | Cf | k | R2 |
---|---|---|---|---|---|
35 | 2.40 | - | 0.001 2 | 0.936 5 | |
2.46 | - | -0.000 4 | 0.943 5 | ||
2.47 | 0.07 | -0.000 4 | 0.942 5 | ||
50 | 3.30 | - | 0.004 2 | 0.632 9 | |
3.39 | - | -0.000 9 | 0.585 6 | ||
2.32 | 4.61 | 0.014 4 | 0.989 2 | ||
65 | 3.84 | - | 0.009 7 | 0.699 | |
3.98 | - | -0.001 8 | 0.640 6 | ||
2.86 | 5.62 | 0.019 4 | 0.997 4 |
表6 零阶、一阶和一阶分数模型与不同干燥温度下b*值的拟合结果
Table 6 Fitting of zero-order, first-order and first-order fraction models to b* values at different drying temperatures
干燥温度/℃ | 模型 | C0 | Cf | k | R2 |
---|---|---|---|---|---|
35 | 2.40 | - | 0.001 2 | 0.936 5 | |
2.46 | - | -0.000 4 | 0.943 5 | ||
2.47 | 0.07 | -0.000 4 | 0.942 5 | ||
50 | 3.30 | - | 0.004 2 | 0.632 9 | |
3.39 | - | -0.000 9 | 0.585 6 | ||
2.32 | 4.61 | 0.014 4 | 0.989 2 | ||
65 | 3.84 | - | 0.009 7 | 0.699 | |
3.98 | - | -0.001 8 | 0.640 6 | ||
2.86 | 5.62 | 0.019 4 | 0.997 4 |
干燥温度/℃ | 模型 | C0 | Cf | k | R2 |
---|---|---|---|---|---|
35 | 36.63 | - | 0.005 | 0.974 7 | |
36.78 | - | 0.000 2 | 0.982 4 | ||
37.26 | 25.46 | 0.000 7 | 0.993 9 | ||
50 | 34.26 | - | 0.033 | 0.871 9 | |
35.01 | - | 0.001 3 | 0.913 2 | ||
37.19 | 21.40 | 0.006 2 | 0.983 | ||
65 | 35.29 | - | 0.059 9 | 0.834 1 | |
36.18 | - | 0.002 3 | 0.884 3 | ||
38.34 | 21.72 | 0.010 2 | 0.958 9 |
表7 零阶、一阶和一阶分数模型与不同干燥温度下L*值的拟合结果
Table 7 Fitting of zero-order, first-order and first-order fractional models to L* values at different drying temperatures
干燥温度/℃ | 模型 | C0 | Cf | k | R2 |
---|---|---|---|---|---|
35 | 36.63 | - | 0.005 | 0.974 7 | |
36.78 | - | 0.000 2 | 0.982 4 | ||
37.26 | 25.46 | 0.000 7 | 0.993 9 | ||
50 | 34.26 | - | 0.033 | 0.871 9 | |
35.01 | - | 0.001 3 | 0.913 2 | ||
37.19 | 21.40 | 0.006 2 | 0.983 | ||
65 | 35.29 | - | 0.059 9 | 0.834 1 | |
36.18 | - | 0.002 3 | 0.884 3 | ||
38.34 | 21.72 | 0.010 2 | 0.958 9 |
干燥温度/℃ | 模型 | C0 | Cf | k | R2 |
---|---|---|---|---|---|
35 | -3.39 | - | 0.000 7 | 0.971 | |
-3.42 | - | 0.000 2 | 0.967 6 | ||
-3.39 | 149.03 | 0.000 004 4 | 0.970 4 | ||
50 | -3.43 | - | 0.012 4 | 0.935 6 | |
-4.23 | - | 0.009 | 0.808 7 | ||
5.03 | 3.61 | 0.002 8 | 0.961 9 | ||
65 | -3.44 | - | 0.021 3 | 0.866 5 | |
-4.26 | - | 0.014 9 | 0.783 1 | ||
4.74 | 2.87 | 0.005 8 | 0.906 4 |
表8 零阶、一阶和一阶分数模型与不同干燥温度下a*值的拟合结果
Table 8 Fitting of 0th-order, first-order and first-order fractional models to a* values at different drying temperatures
干燥温度/℃ | 模型 | C0 | Cf | k | R2 |
---|---|---|---|---|---|
35 | -3.39 | - | 0.000 7 | 0.971 | |
-3.42 | - | 0.000 2 | 0.967 6 | ||
-3.39 | 149.03 | 0.000 004 4 | 0.970 4 | ||
50 | -3.43 | - | 0.012 4 | 0.935 6 | |
-4.23 | - | 0.009 | 0.808 7 | ||
5.03 | 3.61 | 0.002 8 | 0.961 9 | ||
65 | -3.44 | - | 0.021 3 | 0.866 5 | |
-4.26 | - | 0.014 9 | 0.783 1 | ||
4.74 | 2.87 | 0.005 8 | 0.906 4 |
干燥温度 /℃ | 模型 | C0 | Cf | k | R2 |
---|---|---|---|---|---|
35 | 11.03 | - | -0.001 4 | 0.951 7 | |
11.07 | - | 0.000 1 | 0.958 3 | ||
8.38 | 8.09 | 0.000 8 | 0.970 5 | ||
50 | 10.55 | - | -0.016 1 | 0.897 7 | |
11.15 | - | 0.002 4 | 0.951 5 | ||
4.19 | 3.47 | 0.004 6 | 0.966 2 | ||
65 | 10.66 | - | 0.030 3 | 0.889 3 | |
11.37 | - | 0.004 5 | 0.942 9 | ||
3.87 | 2.21 | 0.006 5 | 0.943 5 |
表9 零阶、一阶和一阶分数模型与不同干燥温度下b*值的拟合结果
Table 9 Fitting of zero-order, first-order and first-order fractional models to b* values at different drying temperatures
干燥温度 /℃ | 模型 | C0 | Cf | k | R2 |
---|---|---|---|---|---|
35 | 11.03 | - | -0.001 4 | 0.951 7 | |
11.07 | - | 0.000 1 | 0.958 3 | ||
8.38 | 8.09 | 0.000 8 | 0.970 5 | ||
50 | 10.55 | - | -0.016 1 | 0.897 7 | |
11.15 | - | 0.002 4 | 0.951 5 | ||
4.19 | 3.47 | 0.004 6 | 0.966 2 | ||
65 | 10.66 | - | 0.030 3 | 0.889 3 | |
11.37 | - | 0.004 5 | 0.942 9 | ||
3.87 | 2.21 | 0.006 5 | 0.943 5 |
1 | 孙东宇, 郑志安, 李博睿, 等. 杭白菊干燥技术及干燥品质研究进展[J]. 食品与发酵工业, 2020, 46(15): 295-300. |
SUN Dongyu, ZHENG Zhi'an, LI Borui, et al. Research progress on drying technology and drying quality of Chrysanthemum morifolium [J]. Food and Fermentation Industries, 2020, 46(15): 295-300. | |
2 | SUN Dongyu, WU Min, XU Huihuang, et al. The bioactive properties and quality attributes of Chrysanthemum morifolium Ramat as affected by pulsed vacuum drying [J]. Drying Technology, 2021, 40: 3021-3035. |
3 | TIAN Yuting, ZHAO Yingting, HUANG Jijun, et al. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms [J]. Food Chemistry, 2016, 197: 714-722. |
4 | 李学铃, 张莹莹, 陈晓雯, 等. 切花非洲菊不同外植体初代培养的比较研究[J]. 现代园艺, 2022, 45(10): 7-9. |
5 | 陈霞, 钟建民, 曹玉婵, 等. 黄色蝴蝶兰平面干燥花压制干燥方法研究[J]. 安徽农业科学, 2021, 49(22): 180-183. |
CHEN Xia, ZHONG Jianmin, CAO Yuchan, et al. Study on pressing drying method of Yellow Phalaenopsis Taida pressed-dried flowers [J]. Journal of Anhui Agricultural Science, 2021, 49(22): 180-183. | |
6 | ONWUDE D I, HASHIM N, ABDAN K, et al. The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying [J]. Journal of the Science of Food and Agriculture, 2018, 98(4): 1310-1324. |
7 | LI Xingyi, LIU Yanhong, GAO Zhenjiang, et al. Computer vision online measurement of shiitake mushroom (Lentinus edodes) surface wrinkling and shrinkage during hot air drying with humidity control [J]. Journal of Food Engineering, 2021, 292: 110253. |
8 | 汪京京, 张武, 刘连忠, 等. 农作物病虫害图像识别技术的研究综述[J]. 计算机工程与科学, 2014, 36(7): 1363-1370. |
WANG Jingjing, ZHANG Wu, LIU Lianzhong, et al. Summary of crop diseases and pests image recognition technology [J]. Computer Engineering and Science, 2014, 36(7): 1363-1370. | |
9 | 贾少鹏, 高红菊, 杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报, 2019, 50(S1): 313-317. |
JIA Shaopeng, GAO Hongju, HANG Xiao. Research progress on image recognition technology of crop pests and diseases based on deep learning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 313-317. | |
10 | 高振, 卢彩云, 李洪文, 等. 基于计算机视觉的种子分布信息检测关键技术研究现状与趋势[J]. 智能化农业装备学报(中英文), 2023, 4(3): 50-60. |
GAO Zhen, LU Caiyun, LI Hongwen, et al. Research progress and the prospect of crucial technology of seed spacing information detection based on computer vision [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(3): 50-60. | |
11 | 白振伟, 严富威, 袁培海, 等. 基于嵌入式机器视觉智能果实分拣机器人设计与试验[J].智能化农业装备学报(中英文), 2023, 4(3): 61-70. |
BAI Zhenwei, YAN Fuwei, YUAN Peihai, et al. Design and experiment of fruit sorting robot based on embedded machine vision [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(3): 61-70. | |
12 | XIAO A J, DING C J. Effect of electrohydrodynamic (EHD) on drying kinetics and quality characteristics of shiitake mushroom [J]. Foods, 2022, 11(9): 1303. |
13 | WEN Y X, CHEN L Y, LI B S, et al. Effect of infrared radiation-hot air (IR-HA) drying on kinetics and quality changes of star anise (Illicium verum) [J]. Drying Technology, 2020, 39(1): 90-103. |
14 | 李星仪, 张悦, 谢永康, 等. 热风干燥过程相对湿度对香菇品质的影响[J]. 农业工程学报, 2020, 36(24): 281-291. |
LI Xingyi, ZHANG Yue, XIE Yongkang, et al. Effects of relative humidity on the exterior quality of shiitake mushrooms (Lentinus edodes) during hot air drying [J]. Transactions of the CSAE, 2020, 36(24): 281-291. | |
15 | 宫元娟, 于永伟, 秦军伟, 等. 以图像计算收缩率优化香菇真空缓苏干燥工艺[J]. 农业工程学报, 2010, 26(12): 352-357. |
GONG Yuanjuan, YU Yongwei, QIN Junwei, et al. Optimization of shiitake mushroom vacuum tempering drying process based on imaginary calculation of its shrinking rate [J]. Transactions of the CSAE, 2010, 26(12): 352-357. | |
16 | 李晓, 袁帅, 姚二民, 等. 基于片烟图像处理面积及feret直径的分形分析[J]. 烟草科技, 2020, 53(2): 80-87. |
LI Xiao, YUAN Shuai, YAO Ermin, et al. Fractal analysis of tobacco strip area and feret's diameter based on image processing [J]. Tobacco Science & Technology, 2020, 53(2): 80-87. | |
17 | 郑小南, 杨凡, 李富忠. 图像处理在农业应用的研究进展[J]. 物联网技术, 2020, 10(9): 80-82. |
18 | 闫圣坤, 李忠新, 王庆惠, 等. 热风干燥过程中小白杏色泽的变化及其动力学研究[J]. 食品与机械, 2017, 33(2): 39-45. |
YAN Shengkun, LI Zhongxin, WANG Qinghui, et al. Kinetics of color change of white apricot in XinJiang during hot-air drying [J]. Food and Machinery, 2017, 33(2): 39-45. | |
19 | 张倩钰, 孙杰, 郑炯. 苹果片热风薄层干燥过程中颜色变化的动力学模型[J]. 食品工业科技, 2015, 36(24): 137-141. |
ZHANG Qianyu, SUN Jie, ZHANG Jiong. Color change kinetics model of apple slices during hot-air thin drying [J]. Science and Technology of Food industry, 2015, 36(24): 137-141. | |
20 | LI B R, LIN J Y, ZHENG Z, et al. Effects of different drying methods on drying kinetics and physicochemical properties of Chrysanthemum morifolium Ramat [J]. International Journal of Agricultural and Biological Engineering, 2019, 12(3): 187-193. |
21 | WANG Y, LI X, CHEN X T, et al. Effects of hot air and microwave-assisted drying on drying kinetics, physicochemical properties, and energy consumption of chrysanthemum [J]. Chemical Engineering and Processing-Process Intensification, 2018, 129: 84-94. |
22 | AZEEZ L, ADEBISI S A, OYEDEJI A O, et al. Bioactive compounds' contents, drying kinetics and mathematical modelling of tomato slices influenced by drying temperatures and time [J]. Journal of the Saudi Society of Agricultural Sciences, 2019, 18(2): 120-126. |
23 | XU H H, WU M, WANG Y, et al. Effect of combined infrared and hot air drying strategies on the quality of Chrysanthemum (Chrysanthemum morifolium Ramat.) cakes: Drying behavior, aroma profiles and phenolic compounds [J]. Foods, 2022, 11(15): 2240. |
24 | ARAL S, BEŞE A V. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity [J]. Food Chemistry, 2016, 210: 577-584. |
25 | WU X F, ZHANG M, LI Z. Dehydration modeling of Cordyceps militaris in mid-infrared-assisted convection drying system: Using low-field nuclear magnetic resonance with the aid of ELM and PLSR [J]. Drying Technology, 2019. |
26 | MARQUES B C, PLANA-FATTORI A, FLICK D, et al. Convective drying of yacón (Smallanthus sonchifolius) slices: A simple physical model including shrinkage [J]. LWT, 2022, 159: 113151. |
27 | XIAO H W, LAW C L, SUN D W, et al. Color change kinetics of American ginseng (Panax quinquefolium) slices during air impingement drying [J]. Drying Technology, 2014, 32(4): 418-427. |
28 | LIU Z L, NAN F, ZHENG X, et al. Color prediction of mushroom slices during drying using Bayesian extreme learning machine [J]. Drying Technology, 2020, 38(14): 1869-1881. |
29 | ONWUDE D I, HASHIM N, ABDAN K, et al. The effectiveness of combined infrared and hot-air drying strategies for sweet potato [J]. Journal of Food Engineering, 2019, 241: 75-87. |
30 | HUANG M, WANG Q, ZHANG M, et al. Prediction of color and moisture content for vegetable soybean during drying using hyperspectral imaging technology [J]. Journal of Food Engineering, 2014, 128: 24-30. |
[1] | 马盼, 杨子恒, 万虎, 何顺, 黄远, 徐胜勇. 基于YOLOv8网络的棉蚜图像识别算法及软件系统设计[J]. 智能化农业装备学报(中英文), 2023, 4(3): 42-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||