1 |
张佳华. 遥感技术在作物生长模式及农业气象预报中的应用研究[M]. 北京: 中国农业科学技术出版社, 2021.
|
2 |
WANG J, CHEN J, ZHANG J, et al. Consistency and uncertainty of remote sensing-based approaches for regional yield gap estimation: A comprehensive assessment of process-based and data-driven models [J]. Field Crops Research, 2023, 302: 109088.
|
3 |
张佳华, 张健南, 姚凤梅, 等. 开放式增温对东北稻田生态系统作物生长与产量的影响[J]. 生态学杂志, 2013, 32(1): 15-21.
|
|
ZHANG Jiahua, ZHANG Jiannan, YAO Fengmei, et al. Effects of free air temperature increasing on the rice growth and grain yield in northeast China [J]. Chinese Journal of Ecology, 2013, 32(1): 15-21.
|
4 |
赵春江. 农业遥感研究与应用进展 [J]. 农业机械学报, 2014, 45(12): 277-293.
|
|
ZHAO Chunjiang. Advances of research and application in remote sensing for agriculture [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 277-293.
|
5 |
聂鹏程, 钱程, 覃锐苗, 等. 天空地一体化信息感知与融合技术发展现状与趋势[J]. 智能化农业装备学报(中英文), 2023, 4(2): 1-11.
|
|
NIE Pengcheng, QIAN Cheng, QIN Ruimiao, et al. Development status and trends of space-air-ground integrated information sensing and fusion technology [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(2): 1-11.
|
6 |
BAI Y, ZHANG J, ZHANG S, et al. A remote sensing-based two-leaf canopy conductance model: Global optimization and applications in modeling gross primary productivity and evapotranspiration of crops [J]. Remote Sensing of Environment, 2018, 215: 411-437.
|
7 |
ZHANG S, ZHANG J, BAI J, et al. Evaluation and improvement of the daily boreal ecosystem productivity simulator in simulating gross primary productivity at 41 flux sites across Europe [J]. Ecological Modelling, 2018, 368: 205-232.
|
8 |
CAO D, FENG J, BAI L, et al. Delineating the rice crop activities in northeastern China through regional parametric synthesis using satellite remote sensing time-series data from 2000 to 2015 [J]. Journal of Integrative Agriculture. 2021, 20(2): 424-437.
|
9 |
WANG P J, SUN R, ZHANG J H, et al. Yield estimation of winter wheat in the north China Plain using the remote-sensing-photosynthesis-yield estimation for crops (RS-P-YEC) model [J]. International Journal of Remote Sensing, 2011, 32: 6335-6348.
|
10 |
刘珊珊, 牛超杰, 边琳, 等. 基于NDVI的水稻产量遥感估测[J]. 江苏农业科学, 2019, 47(3): 193-198.
|
11 |
许童羽, 洪雪, 陈春玲, 等. 基于冠层NDVI数据的北方粳稻产量模型研究[J]. 浙江农业学报, 2016, 28(10): 1790-1795.
|
|
XU Tongyu, HONG Xue, CHEN Chunling, et al. Study on northern japonica rice yield model based on canopy date of NDVI [J]. Acta Agriculturae Zhejiangensis, 2016, 28(10): 1790-1795.
|
12 |
YAO F, TANG Y, WANG P, et al. Estimation of maize yield by using a process-based model and remote sensing data in the northeast China Plain [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2015, 87: 142-152.
|
13 |
ZHANG S, BAI Y, ZHANG J H. Remote sensing-based quantification of the summer maize yield gap induced by suboptimum sowing dates over north China Plain [J]. Remote Sensing, 2021, 13: 3582.
|
14 |
PRODHAN F A, ZHANG J, SHARMA T P P, et al. Projection of future drought and its impact on simulated crop yield over South Asia using ensemble machine learning approach [J]. Science of the Total Environment, 2022, 807: 151029
|
15 |
李世隆, 许辰一, 王楠, 等. 基于BWO-ELM的水稻氮素无人机高光谱反演研究[J]. 智能化农业装备学报(中英文), 2024, 5(3): 14-21.
|
|
LI Shilong, XU Chenyi, WANG Nan, et al. Research on rice nitrogen unmanned aerial vehicle hyperspectral inversion based on BWO-ELM [J]. Journal of Intelligent Agricultural Mechanization, 2024,5(3): 14-21
|
16 |
AGHIGHI H, AZADBAKHT M, ASHOURLOO D, et al. Machine learning regression techniques for the silage maize yield prediction using time-series images of Landsat 8 OLI [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 4563-4577.
|
17 |
YANG X, ZHANG J, YANG S, et al. Modelling the crop yield gap with a remote sensing-based process model: A case study of winter wheat in the north China Plain [J]. Journal of Integrative Agriculture, 2023, 22(10): 2993-3005.
|