智能化农业装备学报(中英文) ›› 2023, Vol. 4 ›› Issue (2): 1-11.DOI: 10.12398/j.issn.2096-7217.2023.02.001
• • 下一篇
聂鹏程1, 2, 3,钱程2, 3,覃锐苗3, 4,邓水光1,孙崇德1,何勇1, 2, 3*
出版日期:
2023-05-15
发布日期:
2023-05-15
通讯作者:
何勇,男,1963年生,博士,教授;研究方向为数字农业、农业物联网技术与智能农业装备、农用航空等。E-mail: yhe@zju.edu.cn
作者简介:
聂鹏程,男,1982年生,博士,研究员;研究方向为数字农业与智能装备、光谱检测技术与新型传感仪器等。E-mail: pcn@zju.edu.cn
基金资助:
NIE Pengcheng1, 2, 3, QIAN Cheng2, 3, QIN Ruimiao3, 4, DENG Shuiguang1, SUN Chongde1, HE Yong1, 2, 3*#br#
Online:
2023-05-15
Published:
2023-05-15
摘要: 基于卫星遥感、无人机遥感、智能感知终端及物联组网的新型农情监测技术在各自领域内取得了重大进展,然而单一监测手段难以满足现代农业的全面感知需求,亟须发展多源、多尺度天空地协同监测与智能感知体系。本研究首先介绍了我国现代农业发展中的一些问题并指出了发展天空地信息融合技术的必要性;然后对天、空、地传统感知信息技术分别解析,对卫星遥感技术在各个领域的应用进行归纳,再对近地端无人机遥感技术在病虫害检测、表型分析、干旱胁迫检测等细分领域中的数据获取处理方式进行总结,最后概述了地面网络中智能感知终端和物联网络的关键技术与组网方式,并详细分析天、空、地传统感知信息技术的优缺点、关键技术、发展趋势。结合现有监测技术存在的不足,概述了国内外天、空、地感知技术在农情一体化监测中的最新研究成果与应用情况,在此基础上,指出了天空地一体化农业信息融合技术研究与应用中尚未解决的关键技术问题,提出了我国天空地信息感知与融合技术要朝着稳定性、精细化、系统化方向发展,为今后多源信息融合监测技术发展与应用提供新视角新思路。本研究为分析天、空、地信息感知热点动态,突破相关应用瓶颈,以及把握一体化感知与融合技术发展趋势提供了借鉴和参考,以期助力中国农情信息获取立体化、精准化和智能化发展。
中图分类号:
聂鹏程, 钱程, 覃锐苗, 邓水光, 孙崇德, 何勇. 天空地一体化信息感知与融合技术发展现状与趋势[J]. 智能化农业装备学报(中英文), 2023, 4(2): 1-11.
NIE Pengcheng, QIAN Cheng, QIN Ruimiao, DENG Shuiguang, SUN Chongde, HE Yong. Development status and trends of space-air-ground integrated information sensing and fusion technology[J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(2): 1-11.
[1] TUDI M, DANIEL RUAN H, WANG L, et al. Agriculture development, pesticide application and its impact on the environment [J]. International Journal of Environmental Research and Public Health, 2021, 18(3): 1112. [2] KAUSHAL J, KHATRI M, ARYA S K. A treatise on Organophosphate pesticide pollution: Current strategies and advancements in their environmental degradation and elimination [J]. Ecotoxicology and Environmental Safety, 2021, 207: 111483. [3] GANESAN A R, MOHAN K, RAJAN D K, et al. Distribution, toxicity, interactive effects, and detection of ochratoxin and deoxynivalenol in food: A review [J]. Food Chemistry, 2022, 378: 131978. [4] 农业农村部. 农业农村部关于印发《农业绿色发展技术导则(2018—2030年)》的通知[EB/OL]. http:∥www.gov.cn/gongbao/content/2018/content_5350058.html, 2018-07-02. [5] 中共中央国务院. 中共中央国务院关于实施乡村振兴战略的意见[EB/OL]. http:∥www.mofcom.gov.cn/article/b/g/201805/20180502738498.html, 2018-01-02. [6] KLERKX L, JAKKU E, LABARTHE P. A review of social science on digital agriculture, smart farming and agriculture 40: New contributions and a future research agenda [J]. NJAS—Wageningen Journal of Life Sciences, 2019, 90: 100315. [7] BOURSIANIS A D, PAPADOPOULOU M S, DIAMANTOULAKIS P, et al. Internet of Things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review [J]. Internet of Things, 2022, 18: 100187. [8] SISHODIA R P, RAY R L, SINGH S K. Applications of remote sensing in precision agriculture: A review [J]. Remote Sensing, 2020, 12(19): 3136. [9] CHAO Z H, FANG X, NA J M, et al. A collaborative sensing system for farmland water conservancy project maintenance through integrating satellite, aerial, and ground observations [J]. Water, 2021, 13(16): 2163. [10] PICHIERRI M, BONAFONI S, BIONDI R. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan [J]. Remote Sensing of Environment, 2012, 127: 130-138. [11] HUANG X, WEN D W, LI J Y, et al. Multilevel monitoring of subtle urban changes for the megacities of China using highresolution multiview satellite imagery [J]. Remote Sensing of Environment, 2017, 196: 56-75. [12] YANG J, GONG P, FU R, et al. The role of satellite remote sensing in climate change studies [J]. Nature Climate Change, 2013, 3(10): 875-883. [13] HANSEN M C, POTAPOV P V, MOORE R, et al. Highresolution global maps of 21stcentury forest cover change [J]. Science, 2013, 342(6160): 850-853. [14] ZHANG Y D, CHEN G, MYINT S W, et al. UrbanWatch: A 1meter resolution land cover and land use database for 22 major cities in the United States [J]. Remote Sensing of Environment, 2022, 277: 113058. [15] WANG J J, MA A L, ZHONG Y F, et al. Crosssensor domain adaptation for high spatial resolution urban landcover mapping: From airborne to spaceborne imagery [J]. Remote Sensing of Environment, 2022, 277: 113058. [16] ALVAREZVANHARD E, HOUET T, MONY C, et al. Can UAVs fill the gap between in situ surveys and satellites for habitat mapping? [J]. Remote Sensing of Environment, 2020, 243: 111780. [17] FAUVEL M, LOPES M, DUBO T, et al. Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time series [J]. Remote Sensing of Environment, 2020, 237: 111536. [18] HUANG Q, LONG D, HAN Z Y, et al. Highresolution satellite images combined with hydrological modeling derive river discharge for headwaters: A step toward discharge estimation in ungauged basins [J]. Remote Sensing of Environment, 2022, 277: 113030. [19] BOZZANO F, ESPOSITO C, FRANCHI S, et al. Understanding the subsidence process of a quaternary plain by combining geological and hydrogeological modelling with satellite InSAR data: The Acque Albule Plain case study [J]. Remote Sensing of Environment, 2015, 168: 219-238. [20] ZHANG X D, ZHOU J, LIANG S L, et al. Estimation of 1km allweather remotely sensed land surface temperature based on reconstructed spatialseamless satellite passive microwave brightness temperature and thermal infrared data [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 321-344. [21] MARRA F, MORIN E, PELEG N, et al. Intensity-duration-frequency curves from remote sensing rainfall estimates: Comparing satellite and weather radar over the eastern Mediterranean [J]. Hydrology and Earth System Sciences, 2017, 21(5): 2389-2404. [22] YAN X, ZANG Z, LUO N N, et al. New interpretable deep learning model to monitor realtime PM2.5 concentrations from satellite data [J]. Environment International, 2020, 144: 106060. [23] LEE H J, KUWAYAMA T, FITZGIBBON M. Trends of ambient O3 levels associated with O3 precursor gases and meteorology in California: Synergies from ground and satellite observations [J]. Remote Sensing of Environment, 2023, 284: 113358. [24] ALBERGEL C, DORIGO W, BALSAMO G, et al. Monitoring multidecadal satellite earth observation of soil moisture products through land surface reanalyses [J]. Remote Sensing of Environment, 2013, 138: 77-89. [25] BABAEIAN E, SADEGHI M, JONES S B, et al. Ground, proximal, and satellite remote sensing of soil moisture [J]. Reviews of Geophysics, 2019, 57(2): 530-616. [26] CILLERO CASTRO C, DOMNGUEZ GMEZ J A, DELGADO MARTN J, et al. An UAV and satellite multispectral data approach to monitor water quality in small reservoirs [J]. Remote Sensing, 2020, 12(9): 1514. [27] LI L F, WU J J. Spatiotemporal estimation of satelliteborne and groundlevel NO2 using full residual deep networks [J]. Remote Sensing of Environment, 2021, 254: 112257. [28] BUCHWITZ M, REUTER M, SCHNEISING O, et al. Global satellite observations of columnaveraged carbon dioxide and methane: the GHGCCI XCO2 and XCH4 CRDP3 data set [J]. Remote Sensing of Environment, 2017, 203: 276-295. [29] LI J Y, ZHANG H, CHAO C Y, et al. Integrating lowcost air quality sensor networks with fixed and satellite monitoring systems to study groundlevel PM2.5[J]. Atmospheric Environment, 2020, 223: 117293. [30] LAKSHMI N B, NAIR V S, BABU S S. Assessment of the vertical distribution of speciated aerosol absorption over South Asia using spaceborne LiDAR and groundbased observations [J]. Remote Sensing of Environment, 2021, 253: 112164. [31] CHEN Y J, SU W J, XING C Z, et al. Kilometerlevel glyoxal retrieval via satellite for anthropogenic volatile organic compound emission source and secondary organic aerosol formation identification [J]. Remote Sensing of Environment, 2022, 270: 112852. [32] CHEN K S, WANG J T, MITNIK L M. Satellite and ground observations of the evolution of Typhoon Herb near Taiwan [J]. Remote Sensing of Environment, 2001, 75(3): 397-411. [33] XU L, ABBASZADEH P, MORADKHANI H, et al. Continental drought monitoring using satellite soil moisture, data assimilation and an integrated drought index [J]. Remote Sensing of Environment, 2020, 250: 112028. [34] MARCHETTI D, DE SANTIS A, DARCANGELO S, et al. Preearthquake chain processes detected from ground to satellite altitude in preparation of the 2016—2017 seismic sequence in Central Italy [J]. Remote Sensing of Environment, 2019, 229: 93-99. [35] KALLURI S, GILRUTH P, ROGERS D, et al. Surveillance of arthropod vectorborne infectious diseases using remote sensing techniques: A review [J]. PLoS Pathogens, 2007, 3(10): e116. [36] CHAND T R K, BADARINATH K V S, PRASAD V K, et al. Monitoring forest fires over the Indian region using Defense Meteorological Satellite ProgramOperational Linescan System nighttime satellite data[J]. Remote Sensing of Environment, 2006, 103(2): 165-178. [37] SICARD M, GRANADOSMUOZ M J, ALADOSARBOLEDAS L, et al. Ground/space, passive/active remote sensing observations coupled with particle dispersion modelling to understand the intercontinental transport of wildfire smoke plumes [J]. Remote Sensing of Environment, 2019, 232: 111294. [38] DIFFENBAUGH N S, FIELD C B, APPEL E A, et al. The COVID-19 lockdowns: A window into the Earth System [J]. Nature Reviews Earth & Environment, 2020, 1(9): 470-481. [39] MAEDA E E, LISBOA F, KAIKKONEN L, et al. Temporal patterns of phytoplankton phenology across high latitude lakes unveiled by longterm time series of satellite data [J]. Remote Sensing of Environment, 2019, 221: 609-620. [40] WANG Z H, BAI Y, HE X Q, et al. Estimating particulate organic carbon flux in a highly dynamic estuary using satellite data and numerical modeling [J]. Remote Sensing of Environment, 2021, 252: 112116. [41] 杨国峰, 何勇, 冯旭萍, 等. 无人机遥感监测作物病虫害胁迫方法与最新研究进展[J]. 智慧农业(中英文), 2022, 4(1): 1-16. YANG Guofeng, HE Yong, FENG Xuping, et al. Methods and new research progress of remote sensing monitoring of crop disease and pest stress using unmanned aerial vehicle [J]. Smart Agriculture, 2022, 4(1): 1-16. [42] HUANG H S, DENG J Z, LAN Y B, et al. Detection of helminthosporium leaf blotch disease based on UAV imagery [J]. Applied Sciences, 2019, 9(3): 558. [43] HEIDARIAN DEHKORDI R, EL JARROUDI M, KOUADIO L, et al. Monitoring wheat leaf rust and stripe rust in winter wheat using highresolution UAVbased redgreenblue imagery [J]. Remote Sensing, 2020, 12(22): 3696. [44] SU J Y, LIU C J, HU X P, et al. Spatiotemporal monitoring of wheat yellow rust using UAV multispectral imagery [J]. Computers and Electronics in Agriculture, 2019, 167: 105035. [45] CHIVASA W, MUTANGA O, BIRADAR C. UAVbased multispectral phenotyping for disease resistance to accelerate crop improvement under changing climate conditions [J]. Remote Sensing, 2020, 12(15): 2445. [46] 郭伟, 乔红波, 赵恒谦, 等. 基于比值导数法的棉花蚜害无人机成像光谱监测模型研究[J]. 光谱学与光谱分析, 2021, 41(5): 1543-1550. GUO Wei, QIAO Hongbo, ZHAO Hengqian, et al. Cotton aphid damage monitoring using UAV hyperspectral data based on derivative of ratio spectroscopy [J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1543-1550. [47] GUO A T, HUANG W J, DONG Y Y, et al. Wheat yellow dust detection using UAVbased hyperspectral technology [J]. Remote Sensing, 2021, 13(1): 123. [48] WAN L, LI Y J, CEN H Y, et al. Combining UAVbased vegetation indices and image classification to estimate flower number in oilseed rape [J]. Remote Sensing, 2018, 10(9): 1484. [49] OGAWA D, SAKAMOTO T, TSUNEMATSU H, et al. Surveillance of panicle positions by unmanned aerial vehicle to reveal morphological features of rice [J]. PloS one, 2019, 14(10): e0224386. [50] QIAO L, GAO D H, ZHAO R M, et al. Improving estimation of LAI dynamic by fusion of morphological and vegetation indices based on UAV imagery [J]. Computers and Electronics in Agriculture, 2022, 192: 106603. [51] WAN L, ZHU J P, DU X, et al. A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles [J]. Journal of Experimental Botany, 2021, 72(13): 4691-4707. [52] WAN L, CEN H Y, ZHU J P, et al. Grain yield prediction of rice using multitemporal UAVbased RGB and multispectral images and model transfer—A case study of small farmlands in the South of China [J]. Agricultural and Forest Meteorology, 2020, 291: 108096. [53] YANG K L, GONG Y, FANG S H, et al. Combining spectral and texture features of UAV images for the remote estimation of rice LAI throughout the entire growing season [J]. Remote Sensing, 2021, 13(15): 3001. [54] CEN H Y, WAN L, ZHU J P, et al. Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual imageframe snapshot cameras [J]. Plant Methods, 2019, 15: 32. [55] WAN L, ZHANG J P, DONG X Y, et al. Unmanned aerial vehiclebased field phenotyping of crop biomass using growth traits retrieved from PROSAIL model [J]. Computers and Electronics in Agriculture, 2021, 187: 106304. [56] 张立元, 牛亚晓, 韩文霆, 等. 大田玉米水分胁迫指数经验模型建立方法[J]. 农业机械学报, 2018, 49(5): 233-239. ZHANG Liyuan, NIU Yaxiao, HAN Wenting, et al. Establishing method of crop water stress index empirical model of field maize [J]. Transactions of the CSAM, 2018, 49(5): 233-239. [57] CHANG A, JUNG J, MAEDA M M, et al. Measurement of cotton canopy temperature using radiometric thermal sensor mounted on the unmanned aerial vehicle (UAV)[J]. Journal of Sensors, 2020: 1-7. [58] ZHANG L Y, NIU Y X, ZHANG H H, et al. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring [J]. Frontiers in Plant Science, 2019, 10: 1270. [59] 刘奇, 张智韬, 刘畅, 等. 基于无人机遥感的夏玉米水分胁迫指数改进方法[J]. 农业工程学报, 2023, 39(2): 68-77. LIU Qi, ZHANG Zhitao, LIU Chang, et al. Improved method of crop water stress index based on UAV remote sensing [J]. Transactions of the CSAE, 2023, 39(2): 68-77. [60] SANKARAN S, ZHOU J, KHOT L R, et al. Highthroughput field phenotyping in dry bean using small unmanned aerial vehicle based multispectral imagery [J]. Computers and Electronics in Agriculture, 2018, 151: 84-92. [61] YAO H, QIN R J, CHEN X Y. Unmanned aerial vehicle for remote sensing applications—A review [J]. Remote Sensing, 2019, 11(12): 1443. [62] FENG L, CHEN S S, ZHANG C, et al. A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for highthroughput plant phenotyping [J]. Computers and Electronics in Agriculture, 2021, 182: 106033. [63] RUBIOHERVAS J, GUPTA A, ONG Y S. Datadriven risk assessment and multicriteria optimization of UAV operations [J]. Aerospace Science and Technology, 2018, 77: 510-523. [64] MUKHERJEE A, MISRA S, RAGHUWANSHI N S. A survey of unmanned aerial sensing solutions in precision agriculture [J]. Journal of Network and Computer Applications, 2019, 148: 102461. [65] LIMA M C F, DE ALMEIDA LEANDRO M E D, VALERO C, et al. Automatic detection and monitoring of insect pests—A review [J]. Agriculture, 2020, 10(5): 161. [66] KHANNA A, KAUR S. Evolution of Internet of Things (IoT) and its significant impact in the field of precision agriculture [J]. Computers and Electronics in Agriculture, 2019, 157: 218-231. [67] 何勇, 李禧尧, 杨国峰, 等. 室内高通量种质资源表型平台研究进展与展望[J]. 农业工程学报, 2022, 38(17): 127-141. HE Yong, LI Xiyao, YANG Guofeng, et al. Research progress and prospect of indoor highthroughput germplasm phenotyping platforms [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(17): 127-141. [68] XU R, LI C Y. A modular agricultural robotic system (MARS) for precision farming: Concept and implementation[J]. Journal of Field Robotics, 2022, 39(4): 387-409. [69] 张慧春, 周宏平, 郑加强, 等. 植物表型平台与图像分析技术研究进展与展望[J]. 农业机械学报, 2020, 51(3): 1-17. ZHANG Huichun, ZHOU Hongping, ZHENG Jiaqiang, et al. Research progress and prospect in plant phenotyping platform and image analysis technology [J]. Transactions of the CSAM, 2020, 51(3): 1-17. [70] SHAFIEKHANI A, KADAM S, FRITSCHI F B, et al. Vinobot and vinoculer: Two robotic platforms for highthroughput field phenotyping [J]. Sensors, 2017, 17(1): 214. [71] BAO Y, ZARECOR S, SHAH D, et al. Assessing plant performance in the enviratron [J]. Plant Methods, 2019, 15(1): 114. [72] CHEN Z L, WANG J L, WANG T, et al. Automated infield leaflevel hyperspectral imaging of corn plants using a Cartesian robotic platform [J]. Computers and Electronics in Agriculture, 2021, 183: 105996. [73] ATEFI A, GE Y, PITLA S, et al. In vivo humanlike robotic phenotyping of leaf traits in maize and sorghum in greenhouse [J]. Computers and Electronics in Agriculture, 2019, 163: 104854. [74] GUO Q H, WU F F, PANG S X, et al. Crop 3D-a LiDAR based platform for 3D highthroughput crop phenotyping [J]. Science China Life Sciences, 2018, 61(3): 328-339. [75] 张佳菲, 万亮, 何勇, 等. 基于快速叶绿素荧光技术的油菜冠层生化参数垂直异质性分析[J]. 智慧农业(中英文), 2021, 3(1): 40-50. ZHANG Jiafei, WAN Liang, HE Yong, et al. Vertical heterogeneity analysis of biochemical parameters in oilseed rape canopy based on fast chlorophyll fluorescence technology [J]. Smart Agriculture, 2021, 3(1): 40-50. [76] 聂鹏程, 张慧, 耿洪良, 等. 农业物联网技术现状与发展趋势[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 135-146. NIE Pengcheng, ZHANG Hui, GENG Hongliang, et al. Current situation and development trend of agricultural Internet of Things technology [J]. Journal of Zhejiang University (Agriculture and Life Science), 2021, 47(2): 135-146. [77] 何勇. 专题导读——农业传感器与物联网[J]. 智慧农业(中英文), 2020, 2(2): 2. [78] OJHA T, MISRA S, RAGHUWANSHI N S. Internet of Things for agricultural applications: The state of the art [J]. IEEE Internet of Things Journal, 2021, 8(14): 10973-10997. [79] GILL S S, CHANA I, BUYYA R. IoT based agriculture as a cloud and big data service: The beginning of digital India [J]. Journal of Organizational and End User Computing, 2017, 29(4): 1-23. [80] YIN M, WANG L W. The combination of the IoT wireless data acquisition system and edge computation [C]∥ MATEC Web of Conferences. EDP Sciences, 2021, 336: 05027. [81] ELBASI E, MOSTAFA N, ALARNAOUT Z, et al. Artificial intelligence technology in the agricultural sector: A systematic literature review [J]. IEEE Access, 2022, 11: 171-202. [82] ZHANG S M, ZHAO G X, LANG K, et al. Integrated satellite, unmanned aerial vehicle (UAV) and ground inversion of the SPAD of winter wheat in the reviving stage [J]. Sensors, 2019, 19(7): 1485. [83] GEVAERT C M, TANG J, GARCAHARO F J, et al. Combining hyperspectral UAV and multispectral Formosat2 imagery for precision agriculture applications [C]∥2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2014: 1-4. [84] ZHOU X X, YANG L, WANG W S, et al. UAV data as an alternative to field sampling to monitor vineyards using machine learning based on UAV/Sentinel2 data fusion [J]. Remote Sensing, 2021, 13(3): 457. [85] MAIMAITIJIANG M, SAGAN V, SIDIKE P, et al. Crop monitoring using satellite/UAV data fusion and machine learning [J]. Remote Sensing, 2020, 12(9): 1357. [86] MENGMENG D, NOBORU N, ATSUSHI I, et al. Multitemporal monitoring of wheat growth by using images from satellite and unmanned aerial vehicle [J]. International Journal of Agricultural and Biological Engineering, 2017, 10(5): 1-13. [87] JIANG J, ATKINSON P M, CHEN C S, et al. Combining UAV and Sentinel2 satellite multispectral images to diagnose crop growth and N status in winter wheat at the county scale [J]. Field Crops Research, 2023, 294: 108860. [88] SCHUT A G T, TRAORE P C S, BLAES X, et al. Assessing yield and fertilizer response in heterogeneous smallholder fields with UAVs and satellites [J]. Field Crops Research, 2018, 221: 98-107. [89] LI Y, YAN W, AN S, et al. A spatiotemporal fusion framework of UAV and satellite imagery for winter wheat growth monitoring [J]. Drones, 2023, 7(1): 23. [90] MALAMIRI H R G, ALIABAD F A, SHOJAEI S, et al. A study on the use of UAV images to improve the separation accuracy of agricultural land areas [J]. Computers and Electronics in Agriculture, 2021, 184: 106079. [91] WANG S, GUAN K Y, ZHANG C H, et al. Crossscale sensing of fieldlevel crop residue cover: Integrating field photos, airborne hyperspectral imaging, and satellite data [J]. Remote Sensing of Environment, 2023, 285: 113366. |
[1] | 黄成龙, 张忠福, 卢智浩, 张晓君, 朱龙付, 杨万能. 基于VFNet-Improved和Deep Sort的棉花黄萎病病情分级[J]. 智能化农业装备学报(中英文), 2023, 4(2): 12-21. |
[2] | 杨亮, 王辉, 陈睿鹏, 盛清凯, 袁震, 熊本海. 猪专用传感器研究进展[J]. 智能化农业装备学报(中英文), 2023, 4(2): 22-34. |
[3] | 肖张娜, 罗陆锋, 陈明猷, 王金海, 卢清华, 骆少明. 基于改进YOLO-v4的果园环境下葡萄检测[J]. 智能化农业装备学报(中英文), 2023, 4(2): 35-43. |
[4] | 李易达, 汪刘洋, 韩雨晓, 李帅, 李寒, 张漫. 基于ROS系统的作物图像自主采集系统[J]. 智能化农业装备学报(中英文), 2023, 4(2): 53-62. |
[5] | 闫凯, 高悦, 戴百生, 孙红敏, 尹艳玲, 沈维政. 基于无锚时序动作定位的群养生猪争斗行为检测研究[J]. 智能化农业装备学报(中英文), 2023, 4(1): 17-25. |
[6] | 韩国锋, 柏宗春, 李延森, 李春梅. 家禽胚胎期性别鉴定技术研究与应用进展[J]. 智能化农业装备学报(中英文), 2023, 4(1): 26-35. |
[7] | 苑志宇, 赵云辉, 王嵩, 赵卓, 吴毓瑾, 王春昕. 基于物联网平台的羊智慧养殖管控系统开发与应用[J]. 智能化农业装备学报(中英文), 2023, 4(1): 54-61. |
[8] | 唐瑜嵘, 沈明霞, 薛鸿翔, 陈金鑫. 人工智能技术在畜禽养殖业的发展现状与展望[J]. 智能化农业装备学报(中英文), 2023, 4(1): 1-16. |
[9] | 李亦白, 曹光乔. 基于模拟退火算法的飞防队调度模型研究[J]. 智能化农业装备学报(中英文), 2022, 3(2): 1-9. |
[10] | 白学峰, 常江雪, 滕兆丽, 鲁植雄. 我国智能农业拖拉机关键技术研究进展[J]. 智能化农业装备学报(中英文), 2022, 3(2): 10-21. |
[11] | 刘建龙, 柏宗春, 霍连飞, 孟力力, 王慧鑫. 基于无线传感网络的发酵床垫料温湿度空间分布研究[J]. 智能化农业装备学报(中英文), 2022, 3(2): 22-27. |
[12] | 王焯轩, 王立辉, 许宁徽, 李勇, 石佳晨. 智能收获机器人侧滑及滞后性控制策略研究[J]. 智能化农业装备学报(中英文), 2022, 3(2): 37-44. |
[13] | 白云港, 祝忠钲, 侯英勇, 周立春, 肖茂华, 邹修国. 养鸡场巡检机器人无线充电模块设计与试验[J]. 智能化农业装备学报(中英文), 2022, 3(2): 45-52. |
[14] | 王星辰, 潘伟, 周立春, 侯英勇, Petr Bartos, 肖茂华. 基于CS-BP神经网络的巡检机器人位移补偿方法研究[J]. 智能化农业装备学报(中英文), 2022, 3(2): 53-63. |
[15] | 张磊, 刘义亭, 陈光明, 李佩娟. 基于超声波传感器的巡检机器人导航纠偏研究[J]. 智能化农业装备学报(中英文), 2022, 3(2): 64-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||