Journal of Intelligent Agricultural Mechanization ›› 2025, Vol. 6 ›› Issue (1): 41-50.DOI: 10.12398/j.issn.2096-7217.2025.01.004
Previous Articles Next Articles
CAI Jiayi1(), LIU Shiwei1(
), SHAN Longxiang1, LIU Yong1, SHEN Hongyi1, WANG Qiaohua1,2
Received:
2024-02-01
Revised:
2024-04-04
Online:
2025-02-15
Published:
2025-02-15
Corresponding author:
LIU Shiwei
About author:
CAI Jiayi, E-mail: jycai@webmail.hzau.edu.cn
Supported by:
CLC Number:
CAI Jiayi, LIU Shiwei, SHAN Longxiang, LIU Yong, SHEN Hongyi, WANG Qiaohua. Design and experiment of cracked egg sorting robot based on machine vision and YOLO v5[J]. Journal of Intelligent Agricultural Mechanization, 2025, 6(1): 41-50.
Add to citation manager EndNote|Ris|BibTeX
URL: http://znhnyzbxb.niam.com.cn/EN/10.12398/j.issn.2096-7217.2025.01.004
指标名称 | 参数 |
---|---|
工作电压/V | 9~12.6 |
转动速度/(sec/60°) | 0.18(11.1 V) |
堵转扭矩/(kg·cm) | 35(11.1 V) |
转动范围/(°) | 0~240 |
舵机精度/(°) | 0.2 |
控制方式 | UART串口指令 |
Table 1 Parameters of bus motor HTS-35H
指标名称 | 参数 |
---|---|
工作电压/V | 9~12.6 |
转动速度/(sec/60°) | 0.18(11.1 V) |
堵转扭矩/(kg·cm) | 35(11.1 V) |
转动范围/(°) | 0~240 |
舵机精度/(°) | 0.2 |
控制方式 | UART串口指令 |
Batch_size | 2 | 4 | 8 |
---|---|---|---|
mAP/% | 95.68 | 98.64 | 98.92 |
Table 2 mAPs of different gradient descent Batch_size models
Batch_size | 2 | 4 | 8 |
---|---|---|---|
mAP/% | 95.68 | 98.64 | 98.92 |
蛋品种类 | 环境光 强度 | 数量 试验次数 | 正确识别数/个 | 识别准确率/% | 漏检率/% | 误检率/% |
---|---|---|---|---|---|---|
裂纹蛋 | 较强 | 15×8 | 107 | 89.17 | 1.67 | 9.17 |
较弱 | 15×8 | 112 | 93.33 | 1.67 | 5.00 | |
正常蛋 | 较强 | 15×8 | 115 | 95.83 | 3.33 | 0.83 |
较弱 | 15×8 | 119 | 99.17 | 0.83 | 0 |
Table 3 Test results of cracked eggs recognition accuracy
蛋品种类 | 环境光 强度 | 数量 试验次数 | 正确识别数/个 | 识别准确率/% | 漏检率/% | 误检率/% |
---|---|---|---|---|---|---|
裂纹蛋 | 较强 | 15×8 | 107 | 89.17 | 1.67 | 9.17 |
较弱 | 15×8 | 112 | 93.33 | 1.67 | 5.00 | |
正常蛋 | 较强 | 15×8 | 115 | 95.83 | 3.33 | 0.83 |
较弱 | 15×8 | 119 | 99.17 | 0.83 | 0 |
蛋品种类 | 数量 试验次数 | 蛋品分拣速率/(s·个-1) | 分拣成功率/% | 蛋品漏拣率/% | 蛋品误拣率/% |
---|---|---|---|---|---|
裂纹蛋 | 15×10 | 7.65 | 92.00 | 3.33 | 4.67 |
正常蛋 | 15×10 | 7.45 | 96.67 | 2.00 | 1.33 |
总平均值 | - | 7.55 | 94.34 | 2.67 | 3.00 |
Table 4 Test results of cracked eggs sorting performance
蛋品种类 | 数量 试验次数 | 蛋品分拣速率/(s·个-1) | 分拣成功率/% | 蛋品漏拣率/% | 蛋品误拣率/% |
---|---|---|---|---|---|
裂纹蛋 | 15×10 | 7.65 | 92.00 | 3.33 | 4.67 |
正常蛋 | 15×10 | 7.45 | 96.67 | 2.00 | 1.33 |
总平均值 | - | 7.55 | 94.34 | 2.67 | 3.00 |
1 | 赵芳, 郝莉花, 吕尊严, 等. 2019—2021年全国食品安全监督抽检中鲜蛋抽检情况及分析[J]. 保鲜与加工, 2023, 23(6): 67-72. |
ZHAO Fang, HAO Lihua, Zunyan LÜ, et al. Sampling inspection and analysis of fresh eggs in the national food safety supervision and sampling inspection from 2019 to 2021 [J]. Storage and Process, 2023, 23(6): 67-72. | |
2 | 关心慧, 郑君杰, 方芳, 等. 基于抽检数据的北京市鸡蛋安全状况分析与对策探析[J]. 中国畜牧杂志, 2023, 59(6): 321-325. |
3 | 梁丹, 李平, 梁冬泰, 等. 基于机器视觉的鸡蛋内外品质一体化检测与分级系统[J]. 中国食品学报, 2020, 20(11): 247-254. |
LIANG Dan, LI Ping, LIANG Dongtai, et al. Integrated inspecting and grading system of the egg quality based on machine vision [J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(11): 247-254. | |
4 | 熊利荣, 王树才. 基于机器视觉的鸭蛋裂纹自动检测[J]. 湖北农业科学, 2009, 48(12): 3152-3154. |
XIONG Lirong, WANG Shucai. Automatic detection of duck egg cracks based on machine vision [J]. Hubei Agricultural Sciences, 2009, 48(12): 3152-3154. | |
5 | 潘磊庆, 屠康, 苏子鹏, 等. 基于计算机视觉和神经网络检测鸡蛋裂纹的研究[J]. 农业工程学报, 2007, 23(5): 154-158. |
PAN Leiqing, TU Kang, SU Zipeng, et al. Crack detection in eggs using computer vision and BP neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(5): 154-158. | |
6 | 李竞. 基于机器视觉的鸭蛋蛋壳检测系统[D]. 长沙: 中南大学, 2013. |
LI Jing. System for duck-egg shell crack detection based on machine vision [D]. Changsha: Central South University, 2013. | |
7 | 肖旺. 基于深度学习的禽蛋缺陷识别与检测研究[D]. 广州: 广东工业大学, 2022. |
XIAO Wang. Research on egg defect recognition and detection based on deep learning [D].Guangzhou: Guangdong University of Technology, 2022. | |
8 | ELSTER R T, GOODRUM J W. Detection of cracks in eggs using machine vision [J]. Acta Crystallographica, 1991, 34(1): 307-312. |
9 | OMID M, SOLTANI M, DEHROUYEH M H, et al. An expert egg grading system based on machine vision and artificial intelligence techniques [J]. Journal of Food Engineering, 2013, 118(1): 70-77. |
10 | NASIRI A, OMID M, TAHERI-GARAVAND A. An automatic sorting system for unwashed eggs using deep learning [J]. Journal of Food Engineering, 2020, 283(1): 110036. |
11 | POURREZA H R, POURREZA R S, FAZELI S, et al. Automatic detection of eggshell defects based on machine vision [J]. Journal of Animal and Veterinary Advances, 2008, 7(10): 1200-1203. |
12 | ARIVAZHAGAN S, SHEBIAH R N, SUDHARSAN H, et al. External and internal defect detection of egg using machine vision [J]. Journal of Emerging Trends in Computing and Information Sciences, 2013, 4(3): 257-262. |
13 | TURKOGLU M. Defective egg detection based on deep features and Bidirectional Long-Short-Term-Memory [J]. Computers and Electronics in Agriculture, 2021, 185: 106152. |
14 | 陈明猷, 罗陆锋, 刘威, 等. 采摘机器人全果园视觉感知及自主作业综述[J]. 智慧农业(中英文), 2024, 6(5): 20-39. |
CHEN Mingyou, LUO Lufeng, LIU Wei, et al. Orchard-wide visual perception and autonomous operation of fruit picking robots: A review [J]. Smart Agriculture, 2024, 6(5): 20-39. | |
15 | 李培艺, 汪小旵, 王延鑫, 等. 基于LiDAR多维点云优化的垄作菊花采摘机器人自主导航方法研究[J]. 南京农业大学学报, 2024, 47(4): 809-822. |
LI Peiyi, WANG Xiaochan, WANG Yanxin, et al. Autonomous navigation system for chrysanthemum picking robot based on LiDAR multidimensional point cloud optimization [J]. Journal of Nanjing Agricultural University, 2024, 47(4): 809-822. | |
16 | 冷舒, 吴克, 居鹤华. 机械臂运动学建模及解算方法综述[J]. 宇航学报, 2019, 40(11): 1262-1273. |
LENG Shu, WU Ke, JU Hehua. Overview of manipulator kinematics modeling and solving method [J]. Journal of Astronautics, 2019, 40(11): 1262-1273. | |
17 | 赵一名, 沈明霞, 刘龙申, 等. 基于改进YOLO v5s和图像融合的笼养鸡死鸡检测方法研究[J]. 南京农业大学学报, 2024, 47(2): 369-382. |
ZHAO Yiming, SHEN Mingxia, LIU Longshen, et al. study on the method of detecting dead chickens in caged chicken based on improved YOLO v5s and image fusion [J]. Journal of Nanjing Agricultural University, 2024, 47(2): 369-382. | |
18 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection [C]∥IEEE Conference on Computer Vision and Patten Recognition. Las Vegas: IEEE, 2016: 779-788. |
19 | 商枫楠, 周学成, 梁英凯, 等. 基于改进YOLOX的自然环境中火龙果检测方法[J]. 智慧农业(中英文), 2022, 4(3): 120-131. |
SHANG Fengnan, ZHOU Xuecheng, LIANG Yingkai, et al. Detection method for dragon fruit in natural environment based on improved YOLOX [J]. Smart Agriculture, 2022, 4(3): 120-131. | |
20 | 祝志慧, 何昱廷, 李沃霖, 等. 基于改进YOLOv7模型的复杂环境下鸭蛋识别定位[J]. 农业工程学报, 2023, 39(11): 274-285. |
ZHU Zhihui, HE Yuting, LI Wolin, et al. Improved YOLOv7 model for duck egg recognition and localization in complex environments [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(11): 274-285. |
[1] | CHEN Xu, HE Xun, ZHU Chenhui, WANG Baoshan, WANG Wanzhang. Research status and development trend of feed quantity detection technology for grain combine harvester [J]. Journal of Intelligent Agricultural Mechanization, 2025, 6(1): 71-80. |
[2] | BAI Zhenwei, YAN Fuwei, YUAN Peihai, ZHANG Haoming, YANG Runshu. Design and experiment of fruit sorting robot based on embedded machine vision [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(3): 61-70. |
[3] | CHENG Zhen, SONG Jingling, XU Hongcen, ZHANG Mingliang. Overview of intelligent orientation technology of garlic seed based on machine vision [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(2): 63-70. |
[4] | Zhijun Meng, Bingxin Yan, Yanxin Yin, Qiao Wang, Hui Liu, Lin Ling. Machine vision obstacle detection method in #br# unstructured farmland environment [J]. Journal of Intelligent Agricultural Mechanization, 2021, 2(2): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||