[1] LI N, YAO N, LI Y, et al. A metaanalysis of the possible impact of climate change on global cotton yield based on crop simulation approaches [J]. Agricultural Systems, 2021, 193: 103221.
[2] ZHANG Y, CHEN B, SUN Z W, et al. A largescale genomic association analysis identifies a fragment in Dt11 chromosome conferring cotton Verticillium wilt resistance [J]. Plant Biotechnology Journal, 2021, 19(10): 2126-2138.
[3] GONG Q, YANG Z E, WANG X Q, et al. Salicylic acidrelated cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae [J]. BMC Plant Biology, 2017, 17(1): 1-15.
[4] BARDAK A, ELIK S, ERDOGAN O, et al. Association mapping of Verticillium wilt disease in a worldwide collection of cotton (Gossypium hirsutum L.) [J]. Plants, 2021, 10(2): 306.
[5] DADDDAIGLE P, KIRKBY K, CHOWDHURY P R, et al. The verticillium wilt problem in Australian cotton [J]. Australasian Plant Pathology, 2021, 50(2): 129-135.
[6] SHABAN M, MIAO Y H, ULLAH A, et al. Physiological and molecular mechanism of defense in cotton against verticillium dahliae [J]. Plant Physiology and Biochemistry, 2018, 125: 193-204.
[7] TAO X Y, ZHANG H L, GAO M T, et al. Pseudomonas species isolated via highthroughput screening significantly protect cotton plants against verticillium wilt [J]. AMB Express, 2020, 10: 1-12.
[8] JING X, WANG J H, SONG X Y, et al. Continuum removal method for cotton verticillium wilt severity monitoring with hyperspectral data [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1): 193-198.
[9] JIN N, HUANG W J, REN Y, et al. Hyperspectral identification of cotton verticillium disease severity [J]. OptikInternational Journal for Light and Electron Optics, 2013, 124(16): 2569-2573.
[10] ZHANG N, PAN Y C, FENG H K, et al. Development of Fusarium head blight classification index using hyperspectral microscopy images of winter wheat spikelets [J]. Biosystems Engineering, 2019, 186: 83-99.
[11] CLEVERS J, KOOISTRA L. Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 5(2): 574-583.
[12] 陈兵, 王方永, 韩焕勇, 等. 基于光谱红边参数的棉花黄萎病叶片氮素含量诊断研究[J]. 棉花学报, 2013, 25(3): 254-261.
CHEN Bing, WANG Fangyong, HAN Huanyong, et al. Monitoring nitrogen contents in leaves of cotton under verticillium wilt stress based on spectra rededge parameters [J]. Cotton Science, 2013, 25(3): 254-261.
[13] 陈巧玲. 基于遥感的棉花黄萎病病害严重度估测模型研究[D]. 乌鲁木齐: 新疆农业大学, 2021.
CHEN Qiaoling. Study on estimation model of cotton verticillium wilt disease severity based on remote sensing [D]. Urumqi: Xinjiang Agricultural University, 2021.
[14] HUANG C L, ZHANG Z F, ZHANG X J, et al. A novel intelligent system for dynamic observation of cotton verticillium wilt [J]. Plant Phenomics, 2023, 5: 0013.
[15] 黄成龙, 柯宇曦, 华向东, 等. 边缘计算在智慧农业中的应用现状与展望[J]. 农业工程学报, 2022, 38(16): 224-234.
HUANG Chenglong, KE Yuxi, HUA Xiangdong, et al. Application status and prospect of edge computing in smart agriculture [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(16): 224-234.
[16] 孙宜田, 陈刚, 李青龙, 等. 智慧农业的应用及发展趋势与挑战[J]. 智能化农业装备学报(中英文), 2020, 1(1): 56-59.
SUN Yitian, CHEN Gang, LI Qinglong, et al. Application and development trend of intelligent agriculture [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2020, 1(1): 56-59.
[17] ZOU H W, LU H, LI Y N, et al. Maize tassels detection: A benchmark of the state of the art [J]. Plant Methods, 2020, 16(1): 108.
[18] 姚青, 谷嘉乐, 吕军, 等. 改进RetinaNet的水稻冠层害虫为害状自动检测模型[J]. 农业工程学报, 2020, 36(15): 182-188.
YAO Qing, GU Jiale, L Jun, et al. Automatic detection model for pest damage symptoms on rice canopy based on improved RetinaNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 182-188.
[19] 刘洁, 李燕, 肖黎明, 等. 基于改进YOLOv4模型的橙果识别与定位方法[J]. 农业工程学报, 2022, 38(12): 173-182.
LIU Jie, LI Yan, XIAO Liming, et al. Recognition and location method of orange based on improved YOLOv4 model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(12): 173-182.
[20] FERENTINOS K P. Deep learning models for plant disease detection and diagnosis [J]. Computers and Electronics in Agriculture, 2018, 145: 311-318.
[21] LOEY M, ELSAWY A, AFIFY M. Deep learning in plant diseases detection for agricultural crops: A survey [J]. International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), 2020, 11(2): 41-58.
[22] 王宁, 席茂, 周文罡. 深度视觉目标跟踪进展综述[J]. 中国科学技术大学学报, 2021, 51(4): 335-344.
WANG Ning, XI Mao, ZHOU Wengang. Recent advance in deep visual object tracking [J]. Journal of University of Science and Technology of China, 2021, 51(4): 335-344.
[23] MOCANU B, TAPU R, ZAHARIA T. Single object tracking using offline trained deep regression networks [C]∥2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2017: 1-6.
[24] LI X, WANG K J, WANG W, et al. A multiple object tracking method using Kalman filter [C]∥ The 2010 IEEE International Conference on Information and Automation. IEEE, 2010: 1862-1866.
[25] 宋怀波, 牛满堂, 姬存慧. 基于视频分析的多目标奶牛反刍行为监测[J]. 农业工程学报, 2018, 34(18): 211-218.
SONG Huaibo, NIU Mantang, JI Cunhui. Monitoring of multitarget cow ruminant behavior based on video analysis technology [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 211-218.
[26] 文韬, 洪添胜, 李震. 基于机器视觉的橘小实蝇运动轨迹跟踪与数量检测[J]. 农业工程学报, 2011, 27(10): 137-141.
WEN Tao, HONG Tiansheng, LI Zhen. Statistics and tracking of Bactrocera Dorsalis based on machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(10): 137-141.
[27] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric [C]∥2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017: 3645-3649.
[28] BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking [C]∥2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016: 3464-3468.
[29] ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: An IoUaware dense object detector [C]∥ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8514-8523.
[30] TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convolutional onestage object detection [C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 9627-9636.
[31] ZHANG S F, CHI C, YAO Y Q, et al. Bridging the gap between anchorbased and anchorfree detection via adaptive training sample selection [C]∥ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 9759-9768.
[32] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[33] REN S M, HE K M, GIRSHICK R, et al. Object detection networks on convolutional feature maps [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(7): 1476-1481.
[34] GOODFELLOW I, WARDEFARLEY D, MIRZA M, et al. Maxout networks [C]∥International Conference on Machine Learning. PMLR, 2013: 1319-1327.
[35] 黄成龙, 张忠福, 华向东, 等. 基于改进Faster R-CNN和Deep Sort的棉铃跟踪计数[J/OL].农业机械学报:1-10[2023-04-20].http://kns.cnki.net/kcms/detail/11.1964.S.20230420.1137.004.html
HUANG Chenglong, ZHANG Zhongfu, HUA Xiangdong, et al. Cotton boll tracking and counting based on improved Faster RCNN and Deep Sort [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 1-10[2023-04-20].http://kns.cnki.net/kcms/detail/11.1964.S.20230420.1137.004.html
[36] 刘婉茹, 张国忠, 周勇, 等. 智能化技术在水稻生产全程机械化中的应用研究与发展趋势[J]. 华中农业大学学报, 2022, 41(1): 105-122.
LIU Wanru, ZHANG Guozhong, ZHOU Yong, et al. Application and development of intelligent technology in full mechanization of rice production [J]. Journal of Huazhong Agricultural University, 2022, 41(1): 105-122.
[37] 陈柯屹, 朱龙付, 宋鹏, 等. 融合动态机制的改进型Faster R-CNN识别田间棉花顶芽[J]. 农业工程学报, 2021, 37(16): 161-168.
CHEN Keyi, ZHU Longfu, SONG Peng, et al. Recognition of cotton terminal bud in field using improved Faster R-CNN by integrating dynamic mechanism [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 161-168.
[38] 黄成龙, 李曜辰, 骆树康, 等. 基于结构光三维点云的棉花幼苗叶片性状解析方法[J]. 农业机械学报, 2019, 50(8): 243-248, 288.
HUANG Chenglong, LI Yaochen, LUO Shukang, et al. Cotton seedling leaf traits extraction method from 3D point cloud based on structured light imaging [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 243-248, 288.
[39] 黄成龙, 杨万能, 吴迪, 等. 基于X-ray透射成像的稻穗米粒粒型及谷粒饱满度测量[J]. 中国农业科技导报, 2018, 20(8): 46-53.
HUANG Chenglong, YANG Wanneng, WU Di, et al. Grain size and filling degree extraction for rice panicle based on X-ray imaging [J]. Journal of Agricultural Science and Technology, 2018, 20(8): 46-53.
|