English

智能化农业装备学报(中英文) ›› 2020, Vol. 1 ›› Issue (1): 24-31.DOI: 10.12398/j.issn.2096-7217.2020.01.004

• • 上一篇    下一篇

农业机器人车辆人机协作控制的动态功能分配研究*

毛婷婷, 董淑娴, 薛金林   

  1. 南京农业大学工学院,南京市,210031
  • 收稿日期:2019-11-19 出版日期:2020-08-15 发布日期:2021-11-30
  • 通讯作者: 薛金林,男,1974年生,博士,教授;研究方向为农业车辆测控技术和智能化。E-mail: xuejinlin@ njau.edu.cn
  • 作者简介:毛婷婷,女,1994年生,硕士研究生;研究方向为农业车辆遥操作系统设计。E-mail:mttnj1024@163.com
  • 基金资助:
    江苏省自然科学基金资助(BK20151436);“江苏高校青蓝工程”

Dynamic function allocation of agricultural robot vehicle controlled by man-machine cooperation Dynamic function allocation of agricultural robot vehicle controlled by man-machine cooperation*

Tingting Mao, Shuxian Dong, Jinlin Xue   

  1. College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
  • Received:2019-11-19 Online:2020-08-15 Published:2021-11-30
  • Contact: Jinlin Xue, Doctor,professor, research direction: agricultural vehicle measurement and intelligent control. E-mail: xuejinlin@njau.edu.cn
  • About author:Tingting Mao, Postgraduate, research direction: agricultural vehicle teleoperation system design. E-mail: mttnj1024@163.com
  • Supported by:
    Jiangsu Provincial Natural Science Foundation of China (BK20151436); Jiangsu University Qinglan Project

摘要: 为了实现遥操作农业拖拉机系统中操作员与自动化系统相互协作,共同完成作业任务,需要将功能在人机之间进行合理分配。本文基于对BP神经网络算法、遗传算法和自适应遗传算法三种智能算法对动态功能分配进行研究,操作员的状态、操作员工作量和任务的需求作为动态功能触发机制。首先,利用遗传算法和自适应遗传算法分别对BP神经网络优化,将操作员的状态、操作员工作量和任务的需求作为网络的输入量,输出量是自动化等级,建立了3个网络训练模型,进而得到人机功能分配方案。基于自适应遗传算法BP神经网络模型训练次数远小于基于遗传BP神经网络训练次数,预测准确率也高于基于遗传BP神经网络的预测准侧率。测试结果表明,相比于传统的BP神经网络、遗传BP神经网络,基于自适应遗传BP神经网络更优。

关键词: 遥操作, 农业机器人, 人机功能分配, 遗传算法, 自适应遗传算法, BP神经网络

Abstract: It is necessary to distribute functions reasonably between a human operator and an automation system in a teleoperated agricultural robotic tractor to accomplish a task cooperatively. This paper proposes a strategy of dynamic function allocation on the basis of a BP neural network, genetic algorithm and adaptive genetic algorithm. Here, the operator's state, workload, and task demand are chosen as trigger mechanism of dynamic function allocation. Then, a traditional BP neural network, genetic algorithm based BP neural network, and adaptive genetic algorithm based BP neural network are established by taking the operator's state, workload, and task demand as inputs of the network and automation level as output. The three network are compared to obtain more effective dynamic function allocation. Simulation tests show that the adaptive genetic algorithm based BP neural network has minimum training time and has highest prediction accuracy.

Key words: teleoperation, agricultural robot, function allocation, man-machine cooperation, genetic algorithm, adaptive genetic algorithm, BP neural network