English

智能化农业装备学报(中英文) ›› 2022, Vol. 3 ›› Issue (2): 53-63.DOI: 10.12398/j.issn.2096-7217.2022.02.007

• • 上一篇    下一篇

基于CS-BP神经网络的巡检机器人位移补偿方法研究

王星辰1潘伟1周立春2侯英勇2Petr Bartos3肖茂华1*   

  1. 1. 南京农业大学工学院,江苏南京,210031; 2. 江苏华丽智能科技股份有限公司,江苏常州,213000; 3. 南波希米亚大学农学院,布杰约维采,370 05,捷克
  • 出版日期:2022-11-15 发布日期:2022-11-15
  • 通讯作者: 肖茂华
  • 作者简介:王星辰

Research on displacement compensation method of inspection robot based on CS-BP neural network

Wang Xingchen1, Pan Wei1, Zhou Lichun2, Hou Yingyong2Petr Bartos3, Xiao Maohua1*   

  1. 1. College of Engineering, Nanjing Agricultural University, Nanjing 210031, China;
    2. Jiangsu Huali Intelligent Technology Co., Ltd., Changzhou 213000, China;
    3. Faculty of Agriculture, University of South Bohemia, Ceske Budejovice 370 05, Czech
  • Online:2022-11-15 Published:2022-11-15
  • Contact: Xiao Maohua
  • About author:Wang Xingchen, research interests: intelligent agricultural machinery equipment. E-mail: 2268783082@qq.com
  • Supported by:
    Jiangsu Province International Cooperation Project (BZ2021022); Changzhou International Science and Technology Cooperation Project (CZ20220011); Jiangsu Province Modern Agricultural Machinery Equipment and Technology Demonstration and Promotion Project (NJ2020-01); Nanjing Agricultural University SRT Project(202110307050)

摘要: 智能巡检机器人沿着固定轨迹进行巡检工作时所产生的位移误差会不断地增加,从而偏离既定的巡检路线。因此,提出一种基于CS-BP神经网络的位移补偿方法,利用布谷鸟搜索算法对BP神经网络的权值与阈值进行优化,得到性能最为优异的神经网络结构。试验表明,理论位移曲线乘以通过神经网络输出的位移补偿系数后得到的补偿后的位移曲线与实际位移曲线更加接近,其位移误差远远小于未经补偿的理论位移曲线,试验结果在58.8 s时,经过CS-BP神经网络补偿后输出的位移与实际位移能够维持在3 cm左右的偏差。该位移补偿具有可行性,能够有效缓解智能巡检机器人的运动路径偏离巡检路线的问题。

关键词: 智能巡检机器人, BP神经网络, 布谷鸟搜索算法, 位移补偿

Abstract: The displacement error of intelligent patrol robot will continuously increase when it conducts patrol inspection along a fixed trajectory, thus deviating from the established inspection route. This paper presents a displacement compensation method based on CS-BP neural network. The Cuckoo search algorithm is used to optimize the weight and threshold of BP neural network in order to obtain the most excellent neural network structure. The experimental results show that the compensated displacement curve is closer to the actual displacement curve, and the displacement error is much smaller than the uncompensated theoretical displacement curve. At 58.8 s in the experiment, the deviation between the output displacement and the actual displacement after compensation by CS-BP neural network can be maintained at about 3 cm. The displacement compensation method is feasible and can effectively alleviate the problem that the motion path of the intelligent inspection robot deviates from the inspection route.

Key words: intelligent inspection robot, BP neural network, Cuckoo search algorithm, displacement compensation

中图分类号: