[1] 成升魁, 李云云, 刘晓洁, 等. 关于新时代我国粮食安全观的思考[J]. 自然资源学报, 2018, 33(6): 911-926.
CHENG Shengkui, LI Yunyun, LIU Xiaojie, et al. Thoughts on food security in China in the new period [J]. Journal of natural resources, 2018, 33(6): 911-926.
[2] 张慧春, 周宏平, 郑加强, 等. 植物表型平台与图像分析技术研究进展与展望[J]. 农业机械学报, 2020, 51(3): 1-17.
ZHANG Huichun, ZHOU Hongping, ZHENG Jiaqiang, et al. Research progress and prospect in plant phenotyping platform and image analysis technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 1-17.
[3] GERLAND P, RAFTERY A E, EVCKOV H, et al. World population stabilization unlikely this century[J]. Science, 2014, 346(6206): 234-237.
[4] 张慧春, 王国苏, 边黎明, 等. 基于光学相机的植物表型测量系统与时序生长模型研究[J]. 农业机械学报, 2019, 50(10): 197-207.
ZHANG Huichun, WANG Guosu, BIAN Liming, et al. Visible camerabased 3D phenotype measurement system and timeseries visual growth model of plant [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 197-207.
[5] 张德荣. 植物表型性状参数快速检测研究[D]. 杭州: 浙江大学, 2019.
ZHANG Derong. Study on rapid detection of phenotypic character parameters of plants [D]. Hangzhou: Zhejiang University, 2019.
[6] YANG W, FENG H, ZHANG X, et al. Crop phenomics and highthroughput phenotyping: Past decades, current challenges, and future perspectives [J]. Molecular Plant, 2020, 13(2): 187-214.
[7] WANG L, MIAO Y, HAN Y, et al. Extraction of 3D distribution of potato plant CWSI based on thermal infrared image and binocular stereovision system [J]. Frontiers in Plant Science, 2022, 13.
[8] 徐凌翔, 陈佳玮, 丁国辉, 等. 室内植物表型平台及性状鉴定研究进展和展望[J]. 智慧农业(中英文), 2020, 2(1): 23-42.
XU Lingxiang, CHEN Jiawei, DING Guohui, et al. Indoor phenotyping platforms and associated trait measurement: Progress and prospects [J]. Smart Agriculture, 2020, 2(1): 23-42.
[9] 程曼, 袁洪波, 蔡振江, 等. 田间作物高通量表型信息获取与分析技术研究进展[J]. 农业机械学报, 2020, 51(S1): 314-324.
CHENG Man, YUAN Hongbo, CAI Zhenjiang, et al. Review of Fieldbased Information Acquisition and Analysis of Highthroughput Phenotyping [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 51(S1): 314-324.
[10] JOSHI S, THODAYKENNEDY E, DAETWYLER H D, et al. Highthroughput phenotyping to dissect genotypic differences in safflower for drought tolerance [J]. Plos One, 2021, 16(7): e0254908.
[11] DISSANAYAKE R, KAHROOD H V, DIMECH A M, et al. Development and application of imagebased highthroughput phenotyping methodology for salt tolerance in lentils [J]. Agronomy, 2020, 10(12): 1992.
[12] WANG Y, HU S, REN H, et al. 3D Pheno MVS: A lowcost 3D tomato phenotyping pipeline using 3D reconstruction point cloud based on multiview images [J]. Agronomy, 2022, 12(8): 1865.
[13] WU S, WEN W, WANG Y, et al. MVS-Pheno: a portable and lowcost phenotyping platform for maize shoots using multiview stereo 3D reconstruction [J]. Plant Phenomics, 2020.
[14] WU S, WEN W, GOU W, et al. A miniaturized phenotyping platform for individual plants using multiview stereo 3D reconstruction [J]. Frontiers in Plant Science, 2022, 13.
[15] GAO T, ZHU F, PAUL P, et al. Novel 3D imaging systems for highthroughput phenotyping of plants [J]. Remote Sensing, 2021, 13(11): 2113.
[16] CAPORASO N, WHITWORTH M B, FISK I D. NearInfrared spectroscopy and hyperspectral imaging for nondestructive quality assessment of cereal grains [J]. Applied spectroscopy reviews, 2018, 53(8): 667-687.
[17] GUO Z, YANG W, CHANG Y, et al. Genomewide association studies of image traits reveal genetic architecture of drought resistance in rice [J]. Molecular Plant, 2018, 11(6): 789-805.
[18] LANGSTROFF A, HEUERMANN M C, STAHL A, et al. Opportunities and limits of controlledenvironment plant phenotyping for climate response traits[J]. Theoretical and Applied Genetics, 2022, 135(1): 1-16.
[19] CHEN D, NEUMANN K, FRIEDEL S, et al. Dissecting the phenotypic components of crop plant growth and drought responses based on highthroughput image analysis [J]. The plant cell, 2014, 26(12): 4636-4655.
[20] PIERUSCHKA R, SCHURR U. Plant phenotyping: past, present, and future [J]. Plant Phenomics, 2019.
[21] 何勇, 李禧尧, 杨国峰, 等. 室内高通量种质资源表型平台研究进展与展望[J]. 农业工程学报, 2022, 38(17): 127-141.
HE Yong, LI Xiyao, YANG Guofeng, et al. Research progress and prospect of indoor highthroughput germplasm phenotyping platforms [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(17): 127-141.
[22] 郭庆华, 吴芳芳, 庞树鑫, 等. Crop 3D—基于激光雷达技术的作物高通量三维表型测量平台[J]. 中国科学: 生命科学, 2016, 46(10): 1210-1221.
GUO Qinghua, WU Fangfang, PANG Shuxin, et al. Crop 3D: a platform based on LiDAR for 3D highthroughput crop phenotyping [J]. Scientia Sinica(Vitae), 2016, 46: 1210-1221.
[23] ZHANG C, GAO H, ZHOU J, et al. 3D robotic system development for highthroughput crop phenotyping [J]. IFAC-Papers OnLine, 2016, 49(16): 242-247.
[24] DABEK P, SZREK J, ZIMROZ R, et al. An automatic procedure for overheated idler detection in belt conveyors using fusion of infrared and RGB images acquired during UGV robot inspection [J]. Energies, 2022, 15(2): 601.
|