1 |
许自成, 赵瑞蕊, 王龙宪, 等. 烟叶成熟度的研究进展[J]. 东北农业大学学报, 2014, 45(1): 123-128.
|
|
XU Zicheng, ZHAO Ruirui, WANG Longxian, et al. Research advance of maturity of flue-cured tobacco leaves [J].Journal of Northeast Agricultural University, 2014, 45(1): 123-128.
|
2 |
杨树勋. 准确判断烟叶采收成熟度初探[J]. 中国烟草科学, 2003(4): 34-36.
|
|
YANG Shuxun. Preliminary study on accurately judging the harvesting maturity of tobacco leaves [J]. Chinese Tobacco Science, 2003(4): 34-36.
|
3 |
崔国民, 罗以贵. 云南烤烟烘烤工艺的多样性分析[J]. 云南农业大学学报, 2000(15): 121-125.
|
|
CUI Guomin, LUO Yigui. A variety of researches into curing process of Yunnan tobacco [J]. Journal of Yunnan Agricultural University, 2000(15): 121-125.
|
4 |
YAO P F, ZHAO H X, LUO X P, et al. Fagopyrum tataricum FtWD40functions as a positive regulator of anthocyanin biosynthesis in transgenic tobacco [J]. Journal of Plant Growth Regulation, 2017, 36: 755-765.
|
5 |
CHEAH N P, BORST S, HENDRICKX L, et al. Effect of adding sugar to burley tobacco on the emission of aldehydes in mainstream tobacco smoke [J]. Tobacco Regulatory Science, 2018(2): 61-72.
|
6 |
朱尊权. 烤烟质量和使用价值的关系[J]. 烟草科技, 1991(2): 2-4.
|
|
ZHU Zunquan. The relationship between the quality and use value of flue-cured tobacco [J]. Tobacco Science & Technology, 1991(2): 2-4.
|
7 |
李金兰, 王道铨, 罗登炎, 等. 不同部位烟叶的叶丝烘焙特性[J]. 食品与机械, 2021, 37(4): 195-199, 211.
|
|
LI Jinlan, WANG Daoquan, LUO Dengyan, et al. Study on toasting characteristics of different parts of tobacco [J]. Food & Machinery, 2021, 37(4): 195-199, 211.
|
8 |
CHO H K, PAEK K H. Feasibility in grading the burley type dried tobacco leaf using computer vision [J]. Journal of the Korean Society for Agricultural Machinery (Korea Republic), 1997, 22(1).
|
9 |
周文, 韩力群, 李锐. 计算机图像处理技术在烤烟烟叶形状特征提取中的应用[J]. 烟草科技, 2000(1): 12-13, 42.
|
10 |
史龙飞, 宋朝鹏, 贺帆, 等. 基于机器视觉技术的烤烟鲜烟叶成熟度检测[J]. 湖南农业大学学报(自然科学版), 2012, 38(4): 446-450.
|
|
SHI Longfei, SONG Chaopeng, HE Fan, et al. Determination of the maturity grades of fresh leaves for flue-cured tobacco [J]. Hunan Agricultural University(Natural Sciences), 2012, 38(4): 446-450.
|
11 |
王杰, 毕浩洋. 基于极限学习机的烟叶成熟度分类[J]. 烟草科技, 2013(5): 17-19.
|
|
WANG Jie, BI Haoyang. Tobacco leaf maturity classification based on extreme learning machine [J]. Tobacco Science & Technology, 2013(5): 17-19.
|
12 |
张丽. 基于视觉识别的鲜烟叶分拣系统的研究[D]. 昆明: 昆明理工大学, 2015.
|
|
ZHANG Li. Research of tobacco leaves sorting system based on visual identification [D]. Kunming: Kunming University of Science and Technology, 2015.
|
13 |
谢滨瑶, 祝诗平, 黄华. 基于BPNN和SVM的烟叶成熟度鉴别模型[J]. 中国烟草学报, 2019, 25(1): 45-50.
|
|
XIE Binyao, ZHU Shiping, HUANG Hua. Model for identification of tobacco leaf maturity based on BPNN and SVM [J]. Acta Tabacaria Sinica, 2019, 25(1): 45-50.
|
14 |
徐昭梅, 高云才, 黄云雯, 等. 玉溪烟区K326不同部位初烤烟叶面形态特征的识别[J]. 安徽农业科学, 2018, 46(10): 1-4.
|
|
XU Zhaomei, GAO Yuncai, HUANG Yunwen, et al. Characteristics identification of leaf shape in stalk position of flue-cured tobacco K326 grown in yuxi area [J]. Journal of Anhui Agricultural Sciences, 2018, 46(10): 1-4.
|
15 |
韩小渊, 范磊, 卢晓延, 等. 主脉特征在烟叶部位识别中的应用[J]. 烟草科技, 2017, 50(2): 22-26.
|
|
HAN Xiaoyuan, FAN Lei, LU Xiaoyan, et al. The role of midrib of tobacco leaves in stalk position recognition [J]. Tobacco Science & Technology, 2017, 50(2): 22-26.
|
16 |
吴碧巧, 邢永鑫, 王天一. 基于VGG16和迁移学习的高分辨率掌纹图像识别[J]. 智能计算机与应用, 2021, 11(5): 37-42.
|
|
WU Biqiao, XING Yongxin, WANG Tianyi. High-resolution palmprint image recognition based on VGG16 and transfer learning [J]. Intelligent Computer and Applications, 2021, 11(5): 37-42.
|
17 |
张辉, 胡军, 石航, 等. 融合远端深度学习识别模型的白菜株心精准对靶喷雾系统[J]. 智慧农业(中英文), 2024, 6(6): 85-95.
|
|
ZHANG Hui, HU Jun, SHI Hang, et al. Precision target spraying system integrated with remote deep learning recognition model for cabbage plant centers [J]. Smart Agriculture, 2024, 6(6): 85-95.
|
18 |
罗友璐, 潘勇浩, 夏顺兴, 等. 基于改进YOLOv8的苹果叶病害轻量化检测算法[J]. 智慧农业(中英文), 2024, 6(5): 128-138.
|
|
LUO Youlu, PAN Yonghao, XIA Shunxing, et al. Lightweight apple leaf disease detection algorithm based on improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138.
|
19 |
孙道宗, 张振宇, 陈俊聪, 等. 一种基于深度学习的端到端生菜无损鲜重估测模型的建立[J]. 南京农业大学学报, 2024, 47(6): 1212-1220.
|
|
SUN Daozong, ZHANG Zhenyu, CHEN Juncong, et al. A model for end-to-end non-destructive fresh weight estimation of lettuce based on deep learning [J]. Journal of Nanjing Agricultural University, 2024, 47(6): 1212-1220.
|
20 |
MATTHEW ZEILER D, ROB F. Visualizing and understanding convolutional neural networks [C]// Proceedings of the European Conference on Computer Vision, Zurich, Switzerland. 2014: 6-12.
|
21 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [J]. arXiv preprint arXiv: , 2014.
|
22 |
LOPEZ-ANTEQUERA M, GOMEZ-OJEDA R, PETKOV N, et al. Appearance-invariant place recognition by discriminatively training a convolutional neural network [J]. Pattern Recognition Letters, 2017, 92: 89-95.
|
23 |
SHIN H C, ROTH H R, GAO M C,et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J].IEEE Transactions on Medical Imaging, 2016, 35(5): 1285-1298.
|
24 |
WANG H, WANG Z, DU M, et al. Score-CAM: Score-weighted visual explanations for convolutional neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020: 24-25.
|