[1] Storbeck F, Daan B. Fish species recognition using computer vision and neural network [J]. Fisheries Research, 2001, 51(1): 11-15 [2] 付中正, 何潇, 方逵, 等. 基于改进SSD网络的西兰花叶片检测研究[J]. 中国农机化学报, 2020, 41(4): 92-97. Fu Zhongzheng, He Xiao, Fang Kui, at al. Study on the detection of broccoli leaves based on the improved SSD networks [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(4): 92-97. [3] Otsu N. A threshold selection method from gray-level histograms [J]. Systems Man & Cybernetics IEEE Transactions on, 1979, 9(1): 62-66. [4] Canny J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698. [5] 杨杰超, 许江淳, 陆万荣, 等. 基于计算机视觉的大黄鱼体尺测算与体质量估测[J]. 中国农机化学报, 2018, 39(6): 66-70. Yang Jiechao, Xu Jiangchun, Lu Wanrong, at al. Computer vision-based body size measurement and weight estimation of large yellow croaker [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(6): 66-70. [6] 张军文, 陈庆余, 沈建, 等. 开背大黄鱼去脏用鱼体仿形料槽设计研究[J]. 中国农机化学报, 2019, 40(7): 63-67. Zhang Junwen, Chen Qingyu, Shen Jian, at al. Design and research of shape-like feeding tank for scratching Pseudosciaena crocea [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(7): 63-67. [7] Shi G, Hu J, Da L, et al. Dynamic artificial neural networks based on the target featuer and aplication in target recognition [C]. Conferece on Robotics and Biomimetics, New york: IEEE, 2007: 2106-2109. [8] 王聃, 柴秀娟. 机器学习在植物病害识别研究中的应用[J]. 中国农机化学报, 2019, 40(9): 171-180. Wang Dan, Chai Xiujuan. Application of machine learning in plant diseases recognition [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(9): 171-180. [9] Hu J, Shen L, Sun G. Squeeze-and excitation networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. [10] Chen L C, Zhu Y K, Papandreou G, at al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. Proceedings of the European Conference on Computer Vision, 2018: 801-818. [11] He K, Zhang X, Ren S, at al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [12] Long J,Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [J]. IEEE Conference on Computer Vision and Pattern Recognition,2015, 5(2): 3431-3440. [13] Zhou X, Yang G. Normalization in training U-NET for 2D biomendical semantic segmentation [J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1792-1799. [14] Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs [J]. Computer Science, 2014, 4(6): 357-361. [15] Chen L C, Papandreou G, Kokkinos I, at al. DeepLab: semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2018, 40(4): 834-848. [16] Yurtkulu S C, Sahin Y H, Unal G. Semantic segmentation with extended deeplabv3 architecture [C]. Signal Processing and Communications Applications Conference, 2019: 1-4. [17] 张潜, 桑军, 吴伟群, 等. 基于Xception的细粒度图像分类[J]. 重庆大学学报, 2018, 41(5): 85-91. Zhang Qian, Sang Jun, Wu Weiqun, at al. Fine-grained image classification based on Xception [J]. Journal of Chongqing University, 2018, 41(5): 85-91. [18] 张云, 王志伟, 史鹏坤, 等. 基于机器视觉的棉花异性纤维检测技术优化研究[J]. 中国农机化学报, 2018, 39(9): 61-65. Zhang Yun, Wang Zhiwei, Shi Pengkun, at al. Optimization of cotton heterosexual detection technology based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(9): 61-65. |