English

智能化农业装备学报(中英文) ›› 2021, Vol. 2 ›› Issue (1): 36-43.DOI: 10.12398/j.issn.2096-7217.2021.01.005

• • 上一篇    下一篇

SENet优化的Deeplabv3+淡水鱼体语义分割*

王红君1, 季晓宇1, 赵辉1,2, 岳有军1   

  1. 1.天津理工大学电气电子工程学院,天津市,300384;
    2.天津农学院工程技术学院,天津市,300392
  • 收稿日期:2021-05-01 出版日期:2021-05-15 发布日期:2021-11-30
  • 作者简介:王红君,女,1963年生,天津人,硕士,教授;研究方向为复杂系统智能控制理论及应用。E-mail: hongewang@126.com;译者:李明心,江苏南京人,University of Illinois at Urbana-Champaign;研究方向为计算机工程。E-mail: Mingxin9@illinois.edu
  • 基金资助:
    *天津市科技支撑计划项目(17ZXYENC00080、18YFZCNC01120、15ZXZNGX00290)

SENet optimized Deeplabv3+ freshwater fish body semantic segmentation*

Hongjun Wang1, Xiaoyu Ji1, Hui Zhao1,2, Youjun Yue1   

  1. 1. College of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, 300384, China;
    2. College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
  • Received:2021-05-01 Online:2021-05-15 Published:2021-11-30
  • About author:Hongjun Wang, Professor, research direction: theory and application of complex system intelligent control. E-mail: hongewang@126.com;Translator:Mingxin Li, University of Illinois at Urbana-Champaign, research direction: computer engineering. E-mail: Mingxin9@illinois.edu
  • Supported by:
    *Tianjin Science and Technology Support Plan Project (17ZXYENC00080、18YFZCNC01120、15ZXZNGX00290)

摘要: 淡水鱼头、腹、鳍的各部分快速识别与精准定位是机器人实现淡水鱼快速抓取,精确切割、提升作业效率关键技术的前提。针对深度学习的淡水鱼体语义分割算法在编码特征提取阶段产生大量无效的特征通道,以及网络不断下采样和池化操作使得鱼体某些细节信息被丢失,网络性能下降、边缘分割效果不佳的问题,提出了一种基于SENet优化后的Deeplabv3+淡水鱼头、腹、鳍的语义分割算法。利用空洞/带孔卷积(dilated/atrous convolutions)实现扩展感受野,克服细节信息丢失,达到准确定位的目的,同时SENet的优化使得Deeplabv3+通过学习的方式提升淡水鱼有用的特征并抑制对当前任务用处不大的特征,最终淡水鱼各部分的语义分割平均交并比(MIoU)在自建的淡水鱼数据集上达到了93%左右,性能得到了明显提升并达到了目前先进分割水平。

关键词: 识别, 定位, 深度学习, 特征通道, 感受野, 语义分割

Abstract: The rapid identification and precise positioning of the freshwater fish's head, abdomen, and fins are prerequisites for the robot to achieve fast capturing, accurate segmentation, and the core of working efficiency improvement. The freshwater fish body's semantic segmentation algorithm conducts many invalid feature channels under the encoding feature extraction stage, and the constant network sample collection and pooling operation lead to the loss of detailed information of some fish bodies, decreasing the performance and poor the performance effect of edge cutting. A semantic segmentation algorithm base on SENet optimized Deeplabv3+ freshwater fish head, abdomen, and fins is proposed. Using dilated/atrous convolutions to enlarge the receptive field, prevent detail information loss, and actualize the precise positioning. Meanwhile, the SENet optimization enables Deeplabv3+ to improve the useful feature of freshwater fish and restrains its ineffectual feature. Eventually, the semantic segmentation MIoU of each part of the freshwater fish reached about 93% on the self-established freshwater fish data set. Its feature improved significantly and reached the current advanced segmentation level.

Key words: recognition, location, deep learning, characteristic channel, receptive field, semantic segmentation

中图分类号: