智能化农业装备学报(中英文) ›› 2024, Vol. 5 ›› Issue (4): 1-23.DOI: 10.12398/j.issn.2096-7217.2024.04.001
• • 下一篇
孙竹1,2(), 顾伟1,2, 崔龙飞1,2, 蔡晨1,2, 陈晨1,2, 周晴晴1,2, 丁素明1,2, 兰玉彬3,4, 薛新宇1,2,4()
收稿日期:
2024-10-09
修回日期:
2024-11-01
出版日期:
2024-11-15
发布日期:
2024-11-15
通讯作者:
薛新宇
作者简介:
孙竹,男,1983年生,吉林长春人,副研究员;研究方向为植保机械工程技术。E-mail: johnson_niam@qq.com
基金资助:
SUN Zhu1,2(), GU Wei1,2, CUI Longfei1,2, CAI Chen1,2, CHEN Chen1,2, ZHOU Qingqing1,2, DING Suming1,2, LAN Yubin3,4, XUE Xinyu1,2,4()
Received:
2024-10-09
Revised:
2024-11-01
Online:
2024-11-15
Published:
2024-11-15
Contact:
XUE Xinyu
摘要:
植保机械是农业综合生产力的重要组成部分,先进的植保装备有利于提高农药利用率、提升粮食品质,保障农业可持续发展。从世界范围来看,美国、西欧、日本的施药装备在国际上处于领先水平,相关产品自动化和智能化程度高,作业效率和效果普遍优于国产水平,他们占据了绝大多数的市场份额,我国仅在植保无人机上具有一定的技术优势。为了准确把握植保机械的研究现状和未来发展方向,本研究整理了国内外地面、航空、田间管理机器人等典型植保装备的发展历程,根据大田和果园病虫害防治需求和特点,将植保机械细分为施药、部件及智能化3个技术分支。对变量施药、对靶施药、静电喷雾、风幕风送等施药技术方法进行了总结,对底盘、喷杆平衡、机器人驱动等装备技术原理进行了分析,对无人驾驶、对行行走、视觉导航等智能化技术应用进行了阐述,还从远程管理的角度阐述包括作业规划、调度决策、作业评价以及数字化平台的智能化构建。通过国内外装备技术水平的对比,认为未来植保机械技术发展的重点在于低量精准的施药方式、系列化专业化的装备部件以及无人化和智能化的作业模式。随着人工智能技术的不断发展,具有智能感知、分析决策和自主作业的智能化植保装备将成为未来主流的发展方向。
中图分类号:
孙竹, 顾伟, 崔龙飞, 蔡晨, 陈晨, 周晴晴, 丁素明, 兰玉彬, 薛新宇. 智能植保装备关键技术研究现状与发展趋势[J]. 智能化农业装备学报(中英文), 2024, 5(4): 1-23.
SUN Zhu, GU Wei, CUI Longfei, CAI Chen, CHEN Chen, ZHOU Qingqing, DING Suming, LAN Yubin, XUE Xinyu. Research status and development trends of key technologies for intelligent plant protection equipment[J]. Journal of Intelligent Agricultural Mechanization, 2024, 5(4): 1-23.
1 | 杨学军, 严荷荣, 徐赛章, 等. 植保机械的研究现状及发展趋势[J]. 农业机械学报, 2002, 33(6): 129-131, 137. |
YANG Xuejun, YAN Herong, XU Saizhang, et al. Current situation and development trend of equipment for crop protection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2002, 33(6): 129-131, 137. | |
2 | 聂弯, 谢彦明. 农药使用强度对农作物病虫害发生面积的影响——基于随机效应面板模型的实证分析[J]. 广东农业科学, 2018, 45(1): 135-142. |
NIE Wan, XIE Yanming. Impact of pesticide use intensity on the occurrence area of crop diseases and insect pests—Empirical analysis based on the random effects model [J]. Guangdong Agricultural Sciences, 2018, 45(1): 135-142. | |
3 | 谢晋. 农业植保机械技术应用现状及发展趋势探讨[J]. 农村实用技术, 2024(7): 102-103. |
4 | 金芳, 丁志新. 不同植保机械对小麦病虫害防治效果的影响[J]. 南方农机, 2024, 55(1): 47-49. |
5 | 陈万权. 小麦重大病虫害综合防治技术体系[J]. 植物保护, 2013, 39(5): 16-24. |
CHEN Wanquan. Integrated management of diseases and insect pests on wheat [J]. Plant Protection, 2013, 39(5): 16-24. | |
6 | 蒋金平. 水稻种植技术与病虫害防治要点的研究[J]. 种子科技, 2024, 42(12): 118-120. |
7 | 任培富. 油菜种植及病虫害防治技术[J]. 现代农村科技, 2023(12): 27-28. |
8 | 中国农业机械化科学研究院七室. 国内外植保机械发展概述[J]. 农业机械学报, 1966(2): 149-152. |
9 | 中国大百科全书总编辑委员会. 中国大百科全书:航空 航天[M]. 北京: 中国大百科全书出版社, 1985. |
10 | KEPNER R A, BAINER R, BARGER E L. Principles of farm machinery [M]. AVI Publishing, 1972. |
11 | ZHU H, DERKSEN R C, OZKAN H E. Spray technology for perennial crops [M]. St. Joseph, MI: ASABE, 2004. |
12 | PERRY T. History of agricultural aviation in the United States [M]. Agricultural Aviation Academy, 1989. |
13 | LAW S E. Agricultural electrostatic spray application: A review of engineering principles and operational practices [J]. Journal of Agricultural Engineering Research, 1978, 23(3): 243-256. |
14 | FUKUDA T, NAGAI M. Development of UAV in agriculture in Japan [C]//Proceedings of IEEE International Workshop on Advanced Motion Control, 2006. |
15 | 何雄奎. 中国植保机械与施药技术研究进展[J]. 农药学学报, 2019, 21(S1): 921-930. |
16 | 王文. 田间管理机具[J]. 江苏农机化, 2002(5): 37-38. |
17 | 刘政, 金诚谦, 冯玉岗, 等. 植保机械智能化技术研究现状与趋势[J]. 智能化农业装备学报(中英文), 2024, 5(1): 40-50. |
LIU Zheng, JIN Chengqian, FENG Yugang, et al. Research status and trends of intelligent technology in plant protection machinery [J]. Journal of Intelligent Agricultural Mechanization, 2024, 5(1): 40-50. | |
18 | 张凯, 陈彦宾, 张昭, 等. “十三五”化学农药减施增效综合技术研发成效与标志性成果[J]. 植物保护, 2021, 47(1): 1-7, 14. |
ZHANG Kai, CHEN Yanbin, ZHANG Zhao, et al. The landmark achievements in comprehensive technology development for reduction and efficiency enhancement of chemical pesticide application during the 13th Five-Year Plan [J]. Plant Protection, 2021, 47(1): 1-7, 14. | |
19 | 郑加强, 徐幼林, 张慧春, 等. 国内外植保机械发展及智能化有害生物综合治理系统展望[J]. 中国植保导刊, 2022, 42(3): 20-28. |
ZHENG Jiaqiang, XU Youlin, ZHANG Huichun, et al. Development of domestic and abroad plant protection machinery and prospects of intelligent integrated pest management system [J]. China Plant Protection, 2022, 42(3): 20-28. | |
20 | 王强强, 王凤娟, 王保国, 等. 无人化AI控制技术在农业机械中的应用[J]. 黑龙江科学, 2021, 12(8): 104-105. |
WANG Qiangqiang, WANG Fengjuan, WANG Baoguo, et al. Application of unmanned AI control technology in agricultural machinery [J]. Heilongjiang Science, 2021, 12(8): 104-105. | |
21 | 陈强. 浅析植保机械的发展趋势[J]. 科技风, 2010(24): 137. |
22 | 庄腾飞, 杨学军, 董祥, 等. 大型自走式喷雾机喷杆研究现状及发展趋势分析[J]. 农业机械学报, 2018, 49(S1): 189-198. |
ZHUANG Tengfei, YANG Xuejun, DONG Xiang, et al. Research status and development trend of large self-propelled sprayer booms [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 189-198. | |
23 | 付磊, 杜岳峰, 娄秀华, 等. 大型高地隙喷雾机喷杆设计及有限元分析[J]. 农机化研究, 2023, 45(11): 27-35. |
FU Lei, DU Yuefeng, LOU Xiuhua, et al. Design and finite element analysis of the spray bar of large-scale high ground clearance sprayer [J]. Journal of Agricultural Mechanization Research, 2023, 45(11): 27-35. | |
24 | 乔白羽, 丁素明, 薛新宇, 等. 喷雾机喷杆有限元模态分析与试验[J]. 农机化研究, 2019, 41(4): 30-36. |
QIAO Baiyu, DING Suming, XUE Xinyu, et al. Finite element modal analysis and experiment of sprayer boom [J]. Journal of Agricultural Mechanization Research, 2019, 41(4): 30-36. | |
25 | 崔龙飞, 薛新宇, 乐飞翔, 等. 大型喷杆喷雾机钟摆式主被动悬架自适应鲁棒控制研究[J]. 农业机械学报, 2020, 51(12): 130-141. |
CUI Longfei, XUE Xinyu, LE Feixiang, et al. Adaptive robust control of active and passive pendulum suspension for large boom sprayer [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 130-141. | |
26 | 崔龙飞, 薛新宇, 乐飞翔, 等. 喷杆运动与喷雾沉积分布变异系数关系试验研究[J]. 农机化研究, 2019, 41(6): 169-174. |
CUI Longfei, XUE Xinyu, LE Feixiang, et al. Experimental study on relationship between spray boom movement and spray deposition distribution variation coefficient [J]. Journal of Agricultural Mechanization Research, 2019, 41(6): 169-174. | |
27 | 傅锡敏, 吕晓兰, 丁为民, 等. 我国果园植保机械现状与技术需求[J]. 中国农机化, 2009, 30(6): 10-13, 17. |
FU Ximin, Xiaolan LÜ, DING Weimin, et al. Present state and technical requirement about orchard plant protection machinery in China [J]. Chinese Agricultural Mechanization, 2009, 30(6): 10-13, 17. | |
28 | 张晓辉, 郭清南, 李法德, 等. 3MG-30型果园弥雾机的研制与试验[J]. 农业机械学报, 2002, 33(3): 30-33. |
ZHANG Xiaohui, GUO Qingnan, LI Fade, et al. Development of 3MG-30 orchard mist sprayer [J]. Transactions of the Chinese Society for Agricultural Machinery, 2002, 33(3): 30-33. | |
29 | 何雄奎, 严苛荣, 储金宇, 等. 果园自动对靶静电喷雾机设计与试验研究[J]. 农业工程学报, 2003, 19(6): 78-80. |
HE Xiongkui, YAN Kerong, CHU Jinyu, et al. Design and testing of the automatic target detecting electrostatic air assisted orchard sprayer [J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(6): 78-80. | |
30 | 丁素明, 傅锡敏, 薛新宇, 等. 低矮果园自走式风送喷雾机研制与试验[J]. 农业工程学报, 2013, 29(15): 18-25. |
DING Suming, FU Ximin, XUE Xinyu, et al. Design and experiment of self-propelled air-assisted sprayer in orchard with dwarf culture [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(15): 18-25. | |
31 | 周良富, 张玲, 薛新宇, 等. 3WQ-400型双气流辅助静电果园喷雾机设计与试验[J]. 农业工程学报, 2016, 32(16): 45-53. |
ZHOU Liangfu, ZHANG Ling, XUE Xinyu, et al. Design and experiment of 3WQ-400 double air-assisted electrostatic orchard sprayer [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 45-53. | |
32 | 邱威, 丁为民, 汪小旵, 等. 3WZ-700型自走式果园风送定向喷雾机[J]. 农业机械学报, 2012, 43(4): 26-30, 44. |
QIU Wei, DING Weimin, WANG Xiaochan, et al. 3WZ-700 self-propelled air-blowing orchard sprayer [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 26-30, 44. | |
33 | 张晓辉, 姜宗月, 范国强, 等. 履带自走式果园定向风送喷雾机[J]. 农业机械学报, 2014, 45(8): 117-122, 247. |
ZHANG Xiaohui, JIANG Zongyue, FAN Guoqiang, et al. Self-propelled crawler directional air-blowing orchard sprayer [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 117-122, 247. | |
34 | 杨鹏. 郁闭型果园遥控弥雾机的研制与试验[D]. 杨凌: 西北农林科技大学, 2016. |
35 | 曹玮鑫, 张金砖, 李东坤, 等. 远程遥控式智能果园喷药机器人的设计[J]. 湖北农业科学, 2018, 57(8): 114-116, 122. |
CAO Weixin, ZHANG Jinzhuan, LI Dongkun, et al. Design on remote control orchard spraying robot [J]. Hubei Agricultural Sciences, 2018, 57(8): 114-116, 122. | |
36 | 张健, 秦庆国, 张智刚, 等. 电动遥控履带式果园喷药车的设计[J]. 农机化研究, 2020, 42(3): 249-253. |
ZHANG Jian, QIN Qingguo, ZHANG Zhigang, et al. Design of electric radio-controlled caterpillar spraying vehicle for orchard [J]. Journal of Agricultural Mechanization Research, 2020, 42(3): 249-253. | |
37 | 窦汉杰, 翟长远, 王秀, 等. 基于LiDAR的果园对靶变量喷药控制系统设计与试验[J]. 农业工程学报, 2022, 38(3): 11-21. |
DOU Hanjie, ZHAI Changyuan, WANG Xiu, et al. Design and experiment of the orchard target variable spraying control system based on LiDAR [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(3): 11-21. | |
38 | AHMADI A, NARDI L, CHEBROLU N, et al. Visual servoing-based navigation for monitoring row-crop fields [C]//2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, New Jersey: IEEE, 2020: 4920-4926. |
39 | AHMADI A, HALSTEAD M, MCCOOL C. Towards autonomous visual navigation in arable fields [C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, New Jersey: IEEE, 2022: 6585-6592. |
40 | BOGUE R. Robots poised to revolutionise agriculture [J]. Industrial Robot, 2016, 43(5): 450-456. |
41 | BECHAR A, VIGNEAULT C. Agricultural robots for field operations: Concepts and components [J]. Biosystems Engineering, 2016, 149: 94-111. |
42 | FOX D, BURGARD W, THRUN S. The dynamic window approach to collision avoidance [J]. IEEE Robotics & Automation Magazine, 1997, 4(1): 23-33. |
43 | GRIMSTAD L, FROM P J. Thorvald Ⅱ-a modular and re-configurable agricultural robot [J]. IFAC-PapersOnLine, 2017, 50(1): 4588-4593. |
44 | GREEN O, SCHMIDT T, PIETRZKOWSKI R P, et al. Commercial autonomous agricultural platform-kongskilde robotti [C]//Proceedings of the Second International Conference on Robotics, Associated High-Technologies and Equipment for Agriculture and Forestry-RHEA 2014: New trends in mobile robotics, perception and actuation for agriculture and forestry. 2014: 351-356. |
45 | 邢钦淞, 丁素明, 薛新宇, 等. 智能田间除草机器人发展现状研究[J]. 中国农机化学报, 2022, 43(8): 173-181. |
XING Qinsong, DING Suming, XUE Xinyu, et al. Research on the development status of intelligent field weeding robot [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(8): 173-181. | |
46 | CUI L F, LE F X, XUE X Y, et al. Design and experiment of an agricultural field management robot and its navigation control system [J]. Agronomy, 2024, 14(4): 654. |
47 | LI G X, LE F X, SI S N, et al. Image segmentation-based oilseed rape row detection for infield navigation of agri-robot [J]. Agronomy, 2024, 14(9): 1886. |
48 | SUN T, CUI L F, ZONG L X, et al. Weed recognition at soybean seedling stage based on YOLOV8nGP+NExG algorithm [J]. Agronomy, 2024, 14(4): 657. |
49 | 尹选春, 兰玉彬, 文晟, 等. 日本农业航空技术发展及对我国的启示[J]. 华南农业大学学报, 2018, 39(2): 1-8. |
YIN Xuanchun, LAN Yubin, WEN Sheng, et al. The development of Japan agricultural aviation technology and its enlightenment for China [J]. Journal of South China Agricultural University, 2018, 39(2): 1-8. | |
50 | 何雄奎, JANE BONDS, ANDREAS HERBST, 等. 亚洲农用植保无人机发展与应用[J]. 中国农业文摘-农业工程, 2017, 29(6):5-12. |
51 | 邓巍, 陈立平, 张瑞瑞, 等. 无人机精准施药关键技术综述[J]. 农业工程, 2020, 10(4): 1-10. |
DENG Wei, CHEN Liping, ZHANG Ruirui, et al. Review on key technologies for UAV precision agro-chemical application [J]. Agricultural Engineering, 2020, 10(4): 1-10. | |
52 | 薛新宇, 兰玉彬. 美国农业航空技术现状和发展趋势分析[J]. 农业机械学报, 2013, 44(5): 194-201. |
XUE Xinyu, LAN Yubin. Agricultural aviation applications in USA [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 194-201. | |
53 | 兰玉彬, 王国宾. 中国植保无人机的行业发展概况和发展前景[J]. 农业工程技术, 2018, 38(9): 17-27. |
54 | 王家辉, 王国宾, 张同升, 等. 植保无人机的应用与发展前景[J]. 山东农机化, 2024(3): 42-43. |
55 | 邱白晶, 闫润, 马靖, 等. 变量喷雾技术研究进展分析[J]. 农业机械学报, 2015, 46(3): 59-72. |
QIU Baijing, YAN Run, MA Jing, et al. Research progress analysis of variable rate sprayer technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 59-72. | |
56 | 冯耀宁, 裴亮, 陈晓, 等. 变量施药关键技术综述[J]. 中国农机化学报, 2021, 42(12): 65-71. |
FENG Yaoning, PEI Liang, CHEN Xiao, et al. Summary of the key technology of variable rate application [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(12): 65-71. | |
57 | LUCK J D, PITLA S K, SHEARER S A, et al. Potential for pesticide and nutrient savings via map-based automatic boom section control of spray nozzles [J]. Computers and Electronics in Agriculture, 2010, 70(1): 19-26. |
58 | 陈志刚, 陈梦溪, 魏新华, 等. 基于北斗定位的农田变量处方施药喷雾系统[J]. 排灌机械工程学报, 2015, 33(11): 965-970. |
CHEN Zhigang, CHEN Mengxi, WEI Xinhua, et al. Variable prescription pesticide spraying system for farmland based on the Beidou navigation satellite system [J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(11): 965-970. | |
59 | 王金峰, 吕振阳, 赵敏义, 等. 基于处方图的水稻侧深变量施肥控制系统设计与试验[J]. 农业机械学报, 2024, 55(9): 151-162. |
WANG Jinfeng, Zhenyang LÜ, ZHAO Minyi, et al. Design and experiment of rice side-deep variable rate fertilization control system based on prescription diagrams [J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(9): 151-162. | |
60 | TIAN L. Development of a sensor-based precision herbicide application system [J]. Computers and Electronics in Agriculture, 2002, 36(2/3): 133-149. |
61 | 邓巍, 何雄奎, 张录达, 等. 自动对靶喷雾靶标红外探测研究[J]. 光谱学与光谱分析, 2008, 28(10): 2285-2289. |
DENG Wei, HE Xiongkui, ZHANG Luda, et al. Target infrared detection in target spray [J]. Spectroscopy and Spectral Analysis, 2008, 28(10): 2285-2289. | |
62 | GIL E, LLORENS J, LLOP J, et al. Variable rate sprayer. Part 2-Vineyard prototype: Design, implementation, and validation [J]. Computers and Electronics in Agriculture, 2013, 95: 136-150. |
63 | MULLA D J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps [J]. Biosystems Engineering, 2013, 114(4): 358-371. |
64 | ADÃO T, HRUŠKA J, PÁDUA L, et al. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry [J]. Remote Sensing, 2017, 9(11): 1110. |
65 | ISHIDA T, KURIHARA J, VIRAY F A, et al. A novel approach for vegetation classification using UAV-based hyperspectral imaging [J]. Computers and Electronics in Agriculture, 2018, 144: 80-85. |
66 | DAPHAL S D, KOLI S M. Enhanced classification of sugarcane diseases through a modified learning rate policy in deep learning [J]. Traitement du Signal, 2024, 41(1): 441-449. |
67 | HU C S, SAPKOTA B B, THOMASSON J A, et al. Influence of image quality and light consistency on the performance of convolutional neural networks for weed mapping [J]. Remote Sensing, 2021, 13(11): 2140. |
68 | GENZE N, AJEKWE R, GÜRELI Z, et al. Deep learning-based early weed segmentation using motion blurred UAV images of sorghum fields [J]. Computers and Electronics in Agriculture, 2022, 202: 107388. |
69 | 周良富, 薛新宇, 周立新, 等. 果园变量喷雾技术研究现状与前景分析[J]. 农业工程学报, 2017, 33(23): 80-92. |
ZHOU Liangfu, XUE Xinyu, ZHOU Lixin, et al. Research situation and progress analysis on orchard variable rate spraying technology [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 80-92. | |
70 | ESCOLÀ A, PLANAS S, ROSELL J R, et al. Performance of an ultrasonic ranging sensor in apple tree canopies [J]. Sensors, 2011, 11(3): 2459-2477. |
71 | PENG Z, JUN C. Weed recognition using image blur information [J]. Biosystems Engineering, 2011, 110(2): 198-205. |
72 | LUO S Y, WEN S, ZHANG L, et al. Extraction of crop canopy features and decision-making for variable spraying based on unmanned aerial vehicle LiDAR data [J]. Computers and Electronics in Agriculture, 2024, 224: 109197. |
73 | FAN X P, CHAI X J, ZHOU J P, et al. Deep learning based weed detection and target spraying robot system at seedling stage of cotton field [J]. Computers and Electronics in Agriculture, 2023, 214: 108317. |
74 | WEISSER P, KOCH H. Expression of dose rate with respect to orchard sprayer function [J]. Aspects of Applied Biology, 2002, 66(2): 353-358. |
75 | FURNESS G O, MAGAREY P A, MILLER P M, et al. Fruit tree and vine sprayer calibration based on canopy size and length of row: Unit canopy row method [J]. Crop Protection, 1998, 17(8): 639-644. |
76 | GIL E, ESCOLÀ A. Design of a decision support method to determine volume rate for vineyard spraying [J]. Applied Engineering in Agriculture, 2009, 25(2): 145-151. |
77 | ZHOU Q Q, XUE X Y, CHEN C, et al. Canopy deposition characteristics of different orchard pesticide dose models [J]. International Journal of Agricultural and Biological Engineering, 2023, 16(3): 1-6. |
78 | GONZALEZ R, PAWLOWSKI A, RODRIGUEZ C, et al. Design and implementation of an automatic pressure-control system for a mobile sprayer for greenhouse applications [J]. Spanish Journal of Agricultural Research, 2012, 10(4): 939-949. |
79 | WOMAC A R, BUI Q D. Design and tests of a variable-flow fan nozzle [J]. Transactions of the ASAE, 2002, 45(2): 287. |
80 | LIU H, ZHU H P, SHEN Y, et al. Development of digital flow control system for multi-channel variable-rate sprayers [J]. Transactions of the ASABE, 2014, 57(1): 273-281. |
81 | OSTERMAN A, GODEŠA T, HOČEVAR M, et al. Real-time positioning algorithm for variable-geometry air-assisted orchard sprayer [J]. Computers and Electronics in Agriculture, 2013, 98: 175-182. |
82 | 齐闯. 喷雾机变量施药控制系统研究[D]. 杨凌: 西北农林科技大学, 2021. |
83 | LAW S E. Electrostatic pesticide spraying: Concepts and practice [J]. IEEE transactions on Industry Applications, 1983(2): 160-168. |
84 | TAVARES R M, CUNHA J P, ALVES T C, et al. Electrostatic spraying in the chemical control of Triozoida limbata (enderlein)(Hemiptera: Triozidae) in guava trees (Psidium guajava L.)[J]. Pest Management Science, 2017, 73(6): 1148-1153. |
85 | 李宇飞, 胡军, 刘崇林, 等. 背负式静电喷雾机喷雾沉积性能试验研究[J]. 黑龙江八一农垦大学学报, 2021, 33(1): 76-82, 121. |
LI Yufei, HU Jun, LIU Chonglin, et al. Experimental study on the spray deposition performance of backpack electrostatic sprayer [J]. Journal of Heilongjiang Bayi Agricultural University, 2021, 33(1): 76-82, 121. | |
86 | DE ASSUNÇÃO H H T, CUNHA J P A R DA, SILVA S M, et al. Spray deposition on maize using an electrostatic sprayer [J]. Engenharia Agrícola, 2020, 40(4): 503-510. |
87 | 王军锋, 张娟娟, 王贞涛, 等. 风幕式气力辅助静电喷雾沉积特性[J]. 农业机械学报, 2012, 43(2): 61-65. |
WANG Junfeng, ZHANG Juanjuan, WANG Zhentao, et al. Deposition and distribution characteristics of air-assisted electrostatic spraying by wind-curtain [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(2): 61-65. | |
88 | 贾卫东, 胡化超, 陈龙, 等. 风幕式静电喷杆喷雾喷头雾化与雾滴沉积性能试验[J]. 农业工程学报, 2015, 31(7): 53-59. |
JIA Weidong, HU Huachao, CHEN Long, et al. Performance experiment on spray atomization and droplets deposition of wind-curtain electrostatic boom spray [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(7): 53-59. | |
89 | PATEL M K, PRAVEEN B, SAHOO H K, et al. An advance air-induced air-assisted electrostatic nozzle with enhanced performance [J]. Computers and Electronics in Agriculture, 2017, 135: 280-288. |
90 | 王军锋, 卜佳振, 王晓英, 等. 大载荷无人直升机静电喷雾沉积特性试验研究[J]. 排灌机械工程学报, 2020, 38(12): 1239-1244. |
WANG Junfeng, BU Jiazhen, WANG Xiaoying, et al. Experimental study on electrostatic spray deposition characteristics of large-load unmanned aerial vehicle [J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(12): 1239-1244. | |
91 | ZHANG Y L, HUANG X R, LAN Y B, et al. Development and prospect of UAV-based aerial electrostatic spray technology in China [J]. Applied Sciences, 2021, 11(9): 4071. |
92 | 赵德楠, 兰玉彬, 沈为国. 航空静电喷雾系统构建与雾滴沉积效果影响因素探究[J]. 农机化研究, 2021, 43(8): 204-207, 213. |
ZHAO Denan, LAN Yubin, SHEN Weiguo. Building of aerial electrostatic spraying system and exploration on the influencing factors of droplet deposition effect [J]. Journal of Agricultural Mechanization Research, 2021, 43(8): 204-207, 213. | |
93 | 董文浩, 郭林杰, 马旭, 等. 多喷头静电喷雾的稳定性和均匀性试验研究[J]. 农机化研究, 2023, 45(9): 171-176. |
DONG Wenhao, GUO Linjie, MA Xu, et al. Experimental research on the stability and uniformity of multi-nozzle electrostatic spray [J]. Journal of Agricultural Mechanization Research, 2023, 45(9): 171-176. | |
94 | LIN Z, XIE J Y, TIAN S, et al. Research and experiment of electrostatic spraying system for agricultural plant protection unmanned vehicle [J]. Frontiers in Ecology and Evolution, 2023, 11: 1138180. |
95 | 王士林, 何雄奎, 宋坚利, 等. 双极性接触式航空机载静电喷雾系统荷电与喷雾效果试验[J]. 农业工程学报, 2018, 34(7): 82-89. |
WANG Shilin, HE Xiongkui, SONG Jianli, et al. Charging and spraying performance test of bipolar contact electrostatic spraying system for unmanned aerial vehicle [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(7): 82-89. | |
96 | 刘建河, 石亮, 闫晨阳, 等. 静电雾化喷头喷针布局方式的分析与优化[J]. 排灌机械工程学报, 2021, 39(9): 917-922. |
LIU Jianhe, SHI Liang, YAN Chenyang, et al. Analysis and optimization of needle layout for electrostatic atomization nozzle [J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(9): 917-922. | |
97 | LAW S E. Embedded-electrode electrostatic-induction spray-charging nozzle: theoretical and engineering design [J]. Transactions of the ASAE, 1978, 21(6): 1096-1104. |
98 | 周良富, 张玲, 薛新宇, 等. 农药静电喷雾技术研究进展及应用现状分析[J]. 农业工程学报, 2018, 34(18): 1-11. |
ZHOU Liangfu, ZHANG Ling, XUE Xinyu, et al. Research progress and application status of electrostatic pesticide spray technology [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 1-11. | |
99 | 周宏平, 茹煜, 舒朝然, 等. 航空静电喷雾装置的改进及效果试验[J]. 农业工程学报, 2012, 28(12): 7-12. |
ZHOU Hongping, RU Yu, SHU Chaoran, et al. Improvement and experiment of aerial electrostatic spray device [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(12): 7-12. | |
100 | 张玲, 周良富, 孙竹, 等. 双风道风送静电喷雾系统试验研究[J]. 中国农机化学报, 2014, 35(6): 65-68, 93. |
ZHANG Ling, ZHOU Liangfu, SUN Zhu, et al. Experimental study on a double duct air assisted electrostatic spraying system [J]. Journal of Chinese Agricultural Mechanization, 2014, 35(6): 65-68, 93. | |
101 | ZHOU H T, OU M X, DONG X, et al. Spraying performance and deposition characteristics of an improved air-assisted nozzle with induction charging [J]. Frontiers in Plant Science, 2024, 15: 1309088. |
102 | 林甄, 梁盛开, 谢金冶, 等. 植保静电喷雾系统参数性能研究[J]. 东北农业大学学报, 2021, 52(4): 77-87. |
LIN Zhen, LIANG Shengkai, XIE Jinye, et al. Study on parameter performance of plant protection electrostatic spray system [J]. Journal of Northeast Agricultural University, 2021, 52(4): 77-87. | |
103 | APPAH S, WANG P, OU M X, et al. Review of electrostatic system parameters, charged droplets characteristics and substrate impact behavior from pesticides spraying [J]. International Journal of Agricultural and Biological Engineering, 2019, 12(2): 1-9. |
104 | MAMIDI V R, GHANSHYAM C, KUMAR P M, et al. Electrostatic hand pressure knapsack spray system with enhanced performance for small scale farms [J]. Journal of Electrostatics, 2013, 71(4): 785-790. |
105 | 卢佳节, 陈家兑, 吴扬东, 等. 农用航空静电喷雾系统喷雾性能的研究[J]. 农机化研究, 2019, 41(12): 174-179. |
LU Jiajie, CHEN Jiadui, WU Yangdong, et al. Agricultural aviation research aeronautical electrostatic spray system performance [J]. Journal of Agricultural Mechanization Research, 2019, 41(12): 174-179. | |
106 | POST S L, ROTEN R L. A review of the effects of droplet size and flow rate on the chargeability of spray droplets in electrostatic agricultural sprays [J]. Transactions of the ASABE, 2018, 61(4): 1243-1248. |
107 | GAN-MOR S, RONEN B, OHALIAV K. The effect of air velocity and proximity on the charging of sprays from conventional hydraulic nozzles [J]. Biosystems Engineering, 2014, 121: 200-208. |
108 | MA J, LIU K, CHEN C G, et al. Influence of plant leaf moisture content on retention of electrostatic-induced droplets [J]. Sustainability, 2021, 13(21): 11685. |
109 | GUO J, TAILOR M, BAMBER T, et al. Investigation of relationship between interfacial electroadhesive force and surface texture [J]. Journal of Physics D: Applied Physics, 2016, 49(3): 035303. |
110 | 崔龙飞, 薛新宇, 丁素明, 等. 双钟摆主被动悬架式大型喷雾机喷杆动力学仿真与试验[J]. 农业机械学报, 2017, 48(2): 82-90. |
CUI Longfei, XUE Xinyu, DING Suming, et al. Modeling and simulation of dynamic behavior of large spray boom with active and passive pendulum suspension [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2): 82-90. | |
111 | BAYAT A, İTMEÇ M, ÖZLÜOYMAK Ö B. Development and assessment of a novel servo-controlled spraying system for real time adjustment of the orientation angle of the nozzles of a boom sprayer [J]. Pest Management Science, 2023, 79(11): 4439-4450. |
112 | CUI L F, MAO H P, XUE X Y, et al. Optimized design and test for a pendulum suspension of the crop spray boom in dynamic conditions based on a six DOF motion simulator [J]. International Journal of Agricultural and Biological Engineering, 2018, 11(3): 76-85. |
113 | DEPREZ K, ANTHONIS J, RAMON H, et al. PM-Power and Machinery: Development of a slow active suspension for stabilizing the roll of spray booms, Part 1: Hybrid modeling [J]. Biosystems Engineering, 2002, 81(2): 185-191. |
114 | 陈金成, 张校康, 温浩军, 等. 喷杆喷雾机悬架负载敏感液压系统仿真分析[J]. 液压与气动, 2022, 46(2): 24-30. |
CHEN Jincheng, ZHANG Xiaokang, WEN Haojun, et al. Simulation analysis of load-sensitive hydraulic system for suspension of boom sprayer [J]. Chinese Hydraulics & Pneumatics, 2022, 46(2): 24-30. | |
115 | KALINIEWICZ Z, LIPIŃSKI A, MARKOWSKI P, et al. A new system for measuring boom displacement in a field crop sprayer [J]. Measurement, 2023, 222: 113594. |
116 | 谭昊然, 窦汉杰, 翟长远, 等. 喷杆式喷药机喷杆高度调控系统设计与试验[J]. 农机化研究, 2021, 43(6): 156-160. |
TAN Haoran, DOU Hanjie, ZHAI Changyuan, et al. Design and test of boom height control system for boom sprayer [J]. Journal of Agricultural Mechanization Research, 2021, 43(6): 156-160. | |
117 | 孙星, 杨学军, 董祥, 等. 基于专家控制的喷杆高度智能调节系统研究[J]. 农业机械学报, 2020, 51(S2): 275-282. |
SUN Xing, YANG Xuejun, DONG Xiang, et al. Spray boom height intelligent adjustment system based on expert control [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 275-282. | |
118 | 魏新华, 邵菁, 缪丹丹, 等. 喷杆式喷雾机喷杆高度及平衡在线调控系统[J]. 农业机械学报, 2015, 46(8): 66-71. |
WEI Xinhua, SHAO Jing, MIAO Dandan, et al. Online control system of spray boom height and balance [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(8): 66-71. | |
119 | KALINIEWICZ Z, LIPIŃSKI A, MARKOWSKI P, et al. The influence of selected operating parameters of a field sprayer on boom stability [J]. Computers and Electronics in Agriculture, 2024, 219: 108787. |
120 | CUI L F, XUE X Y, LE F X. Adaptive robust precision control of an active spray boom suspension with disturbance estimation [J]. Journal of Vibration and Control, 2023, 29(3/4): 925-941. |
121 | 崔龙飞, 薛新宇, 乐飞翔, 等. 大型喷杆悬架系统测试平台设计与评价方法研究[J]. 农业工程学报, 2019, 35(16): 23-31. |
CUI Longfei, XUE Xinyu, LE Feixiang, et al. Design and evaluation method of testing bench for spray boom suspension systems [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16): 23-31. | |
122 | CUI L F, XUE X Y, DING S M, et al. Development of a DSP-based electronic control system for the active spray boom suspension [J]. Computers and Electronics in Agriculture, 2019, 166: 105024. |
123 | DOU H J, ZHAI C Y, CHEN L P, et al. Field variation characteristics of sprayer boom height using a newly designed boom height detection system [J]. IEEE Access, 2021, 9: 17148-17160. |
124 | 李中祥, 温浩军, 王国良, 等. 高地隙自走式喷雾机底盘悬架减振特性分析[J]. 新疆农业科学, 2021, 58(12): 2250-2255. |
LI Zhongxiang, WEN Haojun, WANG Guoliang, et al. Test and analysis of vibration reduction characteristics of chassis suspension of highland clearance self-propelled sprayer [J]. Xinjiang Agricultural Sciences, 2021, 58(12): 2250-2255. | |
125 | 陈庚, 罗亚辉, 蒋蘋, 等. 基于主动气囊的高地隙底盘调平系统设计与试验[J]. 农机化研究, 2024, 46(5): 45-52. |
CHEN Geng, LUO Yahui, JIANG Pin, et al. Design and test of high clearance chassis leveling system based on active airbag [J]. Journal of Agricultural Mechanization Research, 2024, 46(5): 45-52. | |
126 | 顾伟, 丁素明, 乐飞翔, 等. 遥控喷杆喷雾机设计与试验[J]. 中国农机化学报, 2022, 43(8): 62-67. |
GU Wei, DING Suming, LE Feixiang, et al. Design and analysis of remote control boom sprayer [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(8): 62-67. | |
127 | 杨方飞, 韩小进, 段垚奇, 等. 高地隙喷杆喷雾机底盘可靠性试验[J]. 农业机械学报, 2014, 45(10): 73-77, 72. |
YANG Fangfei, HAN Xiaojin, DUAN Yaoqi, et al. Reliability experiment on high clearance boom sprayer chassis [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 73-77, 72. | |
128 | 周海燕, 刘树民, 杨学军, 等. 大田蔬菜高地隙自走式喷杆喷雾机的研制[J]. 农机化研究, 2011, 33(6): 70-72. |
ZHOU Haiyan, LIU Shumin, YANG Xuejun, et al. Development on field vegetables high clearance self-propelled boom sprayer [J]. Journal of Agricultural Mechanization Research, 2011, 33(6): 70-72. | |
129 | 乐飞翔. 基于平顺性的自走式喷杆喷雾机油气悬架的仿真与试验[D]. 合肥: 安徽农业大学, 2017. |
130 | 常飞龙. 大型喷杆喷雾机平衡底盘设计与运动仿真[D]. 北京: 中国农业科学院, 2016. |
131 | 薛涛, 李伟, 杜岳峰, 等. 大型高地隙喷雾机喷杆主动悬架自适应模糊滑模控制[J]. 农业工程学报, 2018, 34(21): 47-56. |
XUE Tao, LI Wei, DU Yuefeng, et al. Adaptive fuzzy sliding mode control of spray boom active suspension for large high clearance sprayer [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 47-56. | |
132 | 毛罕平, 倪静, 韩绿化, 等. 高地隙液压四轮驱动喷雾机转向防滑控制系统[J]. 农业机械学报, 2012, 43(6): 58-62. |
MAO Hanping, NI Jing, HAN Lühua. Turning anti-slip control system of hydraulic four-wheel drive high clearance sprayer [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(6): 58-62. | |
133 | 曾山, 刘竣, 罗锡文, 等. 水田高地隙喷雾机轮履复合动力底盘的设计与试验[J]. 华南农业大学学报, 2019, 40(5): 14-22. |
ZENG Shan, LIU Jun, LUO Xiwen, et al. Design and experiment of wheel-track compound power chassis for high clearance sprayer in paddy field [J]. Journal of South China Agricultural University, 2019, 40(5): 14-22. | |
134 | 魏鹏, 闫晓静, 徐军, 等. 植物保护施药技术创新与装备智能化的研究现状与展望[J]. 现代农药, 2023, 22(5): 1-8, 27. |
WEI Peng, YAN Xiaojing, XU Jun, et al. Research status and prospects of innovation in plant protection pesticide spraying technology and intellectualization of pesticide spraying equipment [J]. Modern Agrochemicals, 2023, 22(5): 1-8, 27. | |
135 | 崔冰波, 吉峰, 孙宇, 等. 高斯过程改进的鲁棒容积卡尔曼滤波及其组合导航应用[J]. 电子测量与仪器学报, 2021, 35(9): 34-40. |
CUI Bingbo, JI Feng, SUN Yu, et al. Gaussian process enhanced robust cubature Kalman filter and application in integrated navigation [J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(9): 34-40. | |
136 | 李丹丹, 史云, 李会宾, 等. 农业机器人研究进展评述[J]. 中国农业信息, 2018, 30(6): 1-17. |
LI Dandan, SHI Yun, LI Huibin, et al. Review on the progress of agricultural robot research [J]. China Agricultural Informatics, 2018, 30(6): 1-17. | |
137 | 林洪振. 水田植保施肥装备自动驾驶与无人自主作业系统研究[D]. 上海: 上海交通大学, 2021. |
138 | XIA X M, AI C S, DU Y C. Automatic driving system of plant protection robot based on differential GPS [M]//Automatic Control, Mechatronics and Industrial Engineering. Boca Raton: CRC Press, 2019: 23-29. |
139 | HE C X, CHEN Q T, MIAO Z H, et al. Extracting the navigation path of an agricultural plant protection robot based on machine vision [C]//2021 40th Chinese Control Conference (CCC). IEEE, 2021: 3576-3581. |
140 | GALATI R, REINA G, MESSINA A, et al. Survey and navigation in agricultural environments using robotic technologies [C]//2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2017: 1-6. |
141 | 李寒, 钟涛, 张可意, 等. 基于WebGIS的农机多机协同导航服务平台设计[J]. 农业机械学报, 2022, 53(S1): 28-35. |
LI Han, ZHONG Tao, ZHANG Keyi, et al. Design of agricultural machinery multi-machine cooperative navigation service platform based on WebGIS [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S1): 28-35. | |
142 | 李玫瑾, 魏新华. 四轮驱动四轮转向自动驾驶底盘的电控系统设计[J]. 农机化研究, 2016, 38(3): 115-118, 123. |
LI Meijin, WEI Xinhua. Design of the automatic four-wheel driving and four-wheel steering chassis's electric control system [J]. Journal of Agricultural Mechanization Research, 2016, 38(3): 115-118, 123. | |
143 | 王宁, 韩雨晓, 王雅萱, 等. 农业机器人全覆盖作业规划研究进展[J]. 农业机械学报, 2022, 53(S1): 1-19. |
WANG Ning, HAN Yuxiao, WANG Yaxuan, et al. Research progress of agricultural robot full coverage operation planning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S1): 1-19. | |
144 | 何雄奎. 高效植保机械与精准施药技术进展[J]. 植物保护学报, 2022, 49(1): 389-397. |
HE Xiongkui. Research and development of efficient plant protection equipment and precision spraying technology in China: A review [J]. Journal of Plant Protection, 2022, 49(1): 389-397. | |
145 | 郭永旺, 袁会珠, 何雄奎, 等. 我国农业航空植保发展概况与前景分析[J]. 中国植保导刊, 2014, 34(10): 78-82. |
146 | 兰玉彬. 精准农业航空技术现状及未来展望[J]. 农业工程技术, 2017, 37(30): 27-30. |
147 | 顾伟, 薛新宇, 孙竹. 植保无人飞机标准现状与制定建议[J]. 农业工程技术, 2018, 38(9): 55-58. |
148 | GUO S, LI J Y, YAO W X, et al. Optimization of the factors affecting droplet deposition in rice fields by rotary unmanned aerial vehicles (UAVs)[J]. Precision Agriculture, 2021, 22(6): 1918-1935. |
149 | SHAN C F, WU J J, SONG C C, et al. Control efficacy and deposition characteristics of an unmanned aerial spray system low-volume application on corn fall armyworm Spodoptera frugiperda [J]. Frontiers in Plant Science, 2022, 13: 900939. |
150 | CHEN P C, XU W C, ZHAN Y L, et al. Determining application volume of unmanned aerial spraying systems for cotton defoliation using remote sensing images [J]. Computers and Electronics in Agriculture, 2022, 196: 106912. |
151 | ZHANG S C, CAI C, LI J Q, et al. The airflow field characteristics of the unmanned agricultural aerial system on oilseed rape (Brassica napus) canopy for supplementary pollination [J]. Agronomy, 2021, 11(10): 2035. |
152 | WANG C L, HERBST A, ZENG A J, et al. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard [J]. Science of the Total Environment, 2021, 777: 146181. |
153 | GUO S, YAO W X, XU T Y, et al. Assessing the application of spot spray in Nanguo pear orchards: Effect of nozzle type, spray volume rate and adjuvant [J]. Pest Management Science, 2022, 78(8): 3564-3575. |
154 | 吕佳, 刘知杰, 林尤鑫, 等. 增升增效倾转翼农用植保无人机的设计与仿真[J]. 华南农业大学学报, 2022, 43(4): 125-132. |
Jia LÜ, LIU Zhijie, LIN Youxin, et al. Design and simulation of agricultural plant protection UAV with tilt-rotor of increased lift and efficiency [J]. Journal of South China Agricultural University, 2022, 43(4): 125-132. | |
155 | 陈明. 四旋翼植保无人机的总体设计及其气动特性分析[D]. 天津: 河北工业大学, 2017. |
156 | 林晋立. 多旋翼农用无人机能源载荷匹配技术研究[D]. 广州: 华南农业大学, 2019. |
157 | 李鹏, 石永康, 郭稳敏, 等. 四旋翼植保无人机机臂折叠机构轻量化设计[J]. 农机化研究, 2024, 46(6): 116-121. |
LI Peng, SHI Yongkang, GUO Wenmin, et al. Lightweight design of arm folding mechanism of quad-rotor plant protection UAV [J]. Journal of Agricultural Mechanization Research, 2024, 46(6): 116-121. | |
158 | 顾瑾. 从工业设计看中国植保无人机的发展[J]. 湖北植保, 2018(3): 60-62. |
GU Jin. On development of Chinese plant protection drone from industrial design [J]. Hubei Plant Protection, 2018(3): 60-62. | |
159 | 曹光乔, 李亦白, 南风, 等. 植保无人机飞控系统与航线规划研究进展分析[J]. 农业机械学报, 2020, 51(8): 1-16. |
CAO Guangqiao, LI Yibai, Feng NAN, et al. Development and analysis of plant protection UAV flight control system and route planning research [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 1-16. | |
160 | 刘璐, 沈小伟, 葛超, 等. 基于改进蚁群算法的植保无人机路径规划[J]. 计算机仿真, 2024, 41(1): 39-43. |
LIU Lu, SHEN Xiaowei, GE Chao, et al. Path planning of plant protection UAV based on improved ant colony algorithm [J]. Computer Simulation, 2024, 41(1): 39-43. | |
161 | 孙柯, 吴开华, 王亚涛, 等. 基于毫米波雷达的植保无人机避障系统研究[J]. 传感器与微系统, 2020, 39(6): 73-76. |
SUN Ke, WU Kaihua, WANG Yatao, et al. Research on obstacle avoidance system of plant protection UAV based on millimeter wave radar [J]. Transducer and Microsystem Technologies, 2020, 39(6): 73-76. | |
162 | XU Y, SUN Z, XUE X Y, et al. A hybrid algorithm based on MOSFLA and GA for multi-UAVs plant protection task assignment and sequencing optimization [J]. Applied Soft Computing, 2020, 96: 106623. |
163 | 刘慧, 施志翔, 沈亚运, 等. 基于改进ESKF的植保无人机时延位姿补偿算法[J]. 仪器仪表学报, 2024, 45(2): 315-324. |
LIU Hui, SHI Zhixiang, SHEN Yayun, et al. Time delay and attitude compensation algorithm for plant protection UAV based on the improved ESKF [J]. Chinese Journal of Scientific Instrument, 2024, 45(2): 315-324. | |
164 | 沈跃, 张念, 孙志伟, 等. 基于多速率卡尔曼滤波的植保无人机仿地飞行方法[J]. 农业机械学报, 2023, 54(3): 190-197. |
SHEN Yue, ZHANG Nian, SUN Zhiwei, et al. Terrain following flight for plant protection UAV based on multi-rate Kalman filter [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3): 190-197. | |
165 | XU Y, XUE X Y, SUN Z, et al. Joint path planning and scheduling for vehicle-assisted multiple unmanned aerial systems plant protection operation [J]. Computers and Electronics in Agriculture, 2022, 200: 107221. |
166 | XU Y, HAN Y X, SUN Z, et al. Path planning optimization with multiple pesticide and power loading bases using several unmanned aerial systems on segmented agricultural fields [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(3): 1882-1894. |
167 | XUE X Y, KANG T, QIN W C, et al. Drift and deposition of ultra-low altitude and low volume application in paddy field [J]. International Journal of Agricultural and Biological Engineering, 2014, 4(7): 23-28. |
168 | 张宋超, 薛新宇, 秦维彩, 等. N-3型农用无人直升机航空施药飘移模拟与试验[J]. 农业工程学报, 2015, 31(3): 87-93. |
ZHANG Songchao, XUE Xinyu, QIN Weicai, et al. Simulation and experimental verification of aerial spraying drift on N-3 unmanned spraying helicopter [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 87-93. | |
169 | 薛新宇, 秦维彩, 孙竹, 等. N-3型无人直升机施药方式对稻飞虱和稻纵卷叶螟防治效果的影响[J]. 植物保护学报, 2013, 40(3): 273-278. |
XUE Xinyu, QIN Weicai, SUN Zhu, et al. Effects of N-3 UAV spraying methods on the efficiency of insecticides against planthoppers and Cnaphalocrocis medinalis [J]. Acta Phytophylacica Sinica, 2013, 40(3): 273-278. | |
170 | WANG G B, HAN Y X, LI X, et al. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer [J]. Science of the Total Environment, 2020, 737: 139793. |
171 | SUN Z, GUO X Y, XU Y, et al. Image recognition of male oilseed rape (Brassica napus) plants based on convolutional neural network for UAAS navigation applications on supplementary pollination and aerial spraying [J]. Agriculture, 2022, 12(1): 62. |
172 | 徐华治. 带播种装置的植保无人机推广应用分析[J]. 江苏农机化, 2021(3): 35-36. |
173 | OKSANEN T, VISALA A. Coverage path planning algorithms for agricultural field machines [J]. Journal of Field Robotics, 2009, 26(8): 651-668. |
174 | 徐博. 植保无人机航线规划方法研究[D]. 北京: 中国农业大学, 2017. |
175 | 黄小毛, 张垒, TANG Lie, 等. 复杂边界田块旋翼无人机自主作业路径规划[J]. 农业机械学报, 2020, 51(3): 34-42. |
HUANG Xiaomao, ZHANG Lei, TANG Lie, et al. Path planning for autonomous operation of drone in fields with complex boundaries [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 34-42. | |
176 | BOCHTIS D, GRIEPENTROG H W, VOUGIOUKAS S, et al. Route planning for orchard operations [J]. Computers and Electronics in Agriculture, 2015, 113: 51-60. |
177 | SUN Q L, ZHANG R R, CHEN L P, et al. Semantic segmentation and path planning for orchards based on UAV images [J]. Computers and Electronics in Agriculture, 2022, 200: 107222. |
178 | TIAN H X, MO Z J, MA C Y, et al. Design and validation of a multi-objective waypoint planning algorithm for UAV spraying in orchards based on improved ant colony algorithm [J]. Frontiers in Plant Science, 2023, 14: 1101828. |
179 | 曹光乔, 张庆凯, 陈聪, 等. 基于多目标优化的飞防队作业调度模型研究[J]. 农业机械学报, 2019, 50(11): 92-101. |
CAO Guangqiao, ZHANG Qingkai, CHEN Cong, et al. Scheduling model of UAV plant protection team based on multi-objective optimization [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 92-101. | |
180 | 杨昊天, 王良民, 刘路, 等. 基于区块链的农机跨区域调度模型构建与应用[J]. 农业工程学报, 2022, 38(11): 31-40. |
YANG Haotian, WANG Liangmin, LIU Lu, et al. Model construction and application of agricultural machinery cross-region scheduling based on blockchain [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11): 31-40. | |
181 | 徐正伟, 张亮, 马芳. 基于改进遗传算法的多植保无人机任务分配研究[J]. 工业控制计算机, 2019, 32(6): 43-44, 46. |
XU Zhengwei, ZHANG Liang, MA Fang. Task assignment of multi-plant protection UAVs based on improved genetic algorithm [J]. Industrial Control Computer, 2019, 32(6): 43-44, 46. | |
182 | 阚平, 姜兆亮, 刘玉浩, 等. 多植保无人机协同路径规划[J]. 航空学报, 2020, 41(4): 260-270. |
183 | 马英剑, 甄硕, 孙喆, 等. 农药制剂研发的精细化、功能化与农业生产高效利用[J]. 农药学学报, 2022, 24(5): 1080-1098. |
MA Yingjian, ZHEN Shuo, SUN Zhe, et al. Refinement and functionalization of pesticide formulation research and development and efficient utilization in agricultural production [J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1080-1098. | |
184 | 宋倩, 黄啟良, 袁会珠, 等. 可控缓释纳米农药制剂及其研究进展[C]//中国植物保护学会.植物保护科技创新与发展——中国植物保护学会2008年学术年会论文集.中国农业科学院植物保护研究所植物病虫害生物学国家重点实验室, 2008: 4. |
185 | 唐伟, 张建萍, 杨永杰, 等. 机插秧同步施用噁草酮-复合肥缓释颗粒剂的研制及其田间应用[J]. 农药学学报, 2021, 23(3): 515-522. |
TANG Wei, ZHANG Jianping, YANG Yongjie, et al. Development and application of oxadiazon-fertilizer slow-release granule for synchronous application in mechanical transplanting rice [J]. Chinese Journal of Pesticide Science, 2021, 23(3): 515-522. | |
186 | 兰玉彬, 单常峰, 王庆雨, 等. 不同喷雾助剂在植保无人机喷施作业中对雾滴沉积特性的影响[J]. 农业工程学报, 2021, 37(16): 31-38. |
LAN Yubin, SHAN Changfeng, WANG Qingyu, et al. Effects of different spray additives on droplet deposition characteristics during plant protection UAV spraying operations [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 31-38. | |
187 | 陈盛德, 兰玉彬, 周志艳, 等. 植保无人机航空喷施飞行质量的试验与评价[J]. 华南农业大学学报, 2019, 40(3): 89-96. |
CHEN Shengde, LAN Yubin, ZHOU Zhiyan, et al. Test and evaluation for flight quality of aerial spraying of plant protection UAV [J]. Journal of South China Agricultural University, 2019, 40(3): 89-96. | |
188 | XU Y, XUE X Y, SUN Z, et al. Online spraying quality assessment system of plant protection unmanned aerial vehicle based on Android client [J]. Computers and Electronics in Agriculture, 2019, 166: 104938. |
189 | XU Y, XUE X Y, SUN Z, et al. Non-intrusive flowrate measurement and monitoring system of plant-protection unmanned aircraft systems based on pump voice analysis [J]. International Journal of Agricultural and Biological Engineering, 2021, 14(3): 58-65. |
[1] | 李建平, 李绍波, 杨欣, 张阔, 谢金燕, 刘树腾, 姜尊豪, 张詝, 王朋. 苹果园生产管理智能机械化技术与装备研究进展与展望[J]. 智能化农业装备学报(中英文), 2024, 5(4): 66-83. |
[2] | 刘政, 金诚谦, 冯玉岗, 杨腾祥. 植保机械智能化技术研究现状与趋势[J]. 智能化农业装备学报(中英文), 2024, 5(1): 40-50. |
[3] | 李亦白, 曹光乔. 基于模拟退火算法的飞防队调度模型研究[J]. 智能化农业装备学报(中英文), 2022, 3(2): 1-9. |
[4] | 韩余, 宋志禹, 陈巧敏. 4CJ-1200F智能采茶机设计与试验[J]. 智能化农业装备学报(中英文), 2022, 3(1): 1-6. |
[5] | 段洁利, 王昭锐, 叶磊, 杨洲, . 水果采摘机械臂运动规划研究进展与发展趋势[J]. 智能化农业装备学报(中英文), 2021, 2(2): 7-17. |
[6] | 陈文明, , 胡良龙, 袁建宁, 王公仆, 王冰, 吴稳, . 国内蔬菜收获机自动控制技术研究现状及展望[J]. 智能化农业装备学报(中英文), 2021, 2(2): 57-63. |
[7] | 李斐露, 杨兰, 李玉, 李鉴方, 雷良育. 植保无人机应用绩效及其对策研究——以杭州市萧山区为例植保无人机应用绩效及其对策研究[J]. 智能化农业装备学报(中英文), 2021, 2(2): 64-70. |
[8] | 刘勤, 胡良龙, 郑砚砚, 檀律科, 王叶萌, 陈青. 中国茶叶及蔬菜智能化收获技术发展现状*[J]. 智能化农业装备学报(中英文), 2021, 2(1): 20-27. |
[9] | 罗锡文. 人工智能与植保机械化[J]. 智能化农业装备学报(中英文), 2020, 1(1): 1-6. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||