Journal of Intelligent Agricultural Mechanization ›› 2023, Vol. 4 ›› Issue (1): 1-16.DOI: 10.12398/j.issn.2096-7217.2023.01.001
Tang Yurong1, 2, Shen Mingxia2, 3*, Xue Hongxiang1, 2, Chen Jinxin1, 2
Online:
2023-02-15
Published:
2023-02-15
CLC Number:
Tang Yurong, Shen Mingxia, Xue Hongxiang, Chen Jinxin. Development status and prospect of artificial intelligence technology in livestock and poultry breeding[J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(1): 1-16.
Add to citation manager EndNote|Ris|BibTeX
URL: http://znhnyzbxb.niam.com.cn/EN/10.12398/j.issn.2096-7217.2023.01.001
[1] 龙新. 畜禽生产恢复成效超出预期[N]. 中国畜牧兽医报, 2020-12-20(001). [2]曹兵海, 张越杰, 李俊雅, 等. 2021年肉牛牦牛产业技术发展报告[J]. 中国畜牧杂志, 2022, 58(3): 245-250. [3]中华人民共和国农业农村部. 农业农村部畜禽专题[EB/OL]. http:∥www.moa.gov.cn/ztzl/szcpxx/jdsj/2022/202209/, 2022-12-20. [4]中华人民共和国中央人民政府. 中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL]. http:∥www.gov.cn/zhengce/2021-10/24/content_5644613.htm, 2021-10-24. [5]中华人民共和国农业农村部. 国务院关于印发“十四五”推进农业农村现代化规划的通知[EB/OL]. http:∥www.moa.gov.cn/govpublic/FZJHS/202202/t20220211_6388493.htm, 2022-02-11. [6]郝福明, 田建艳, 郑晟, 等. 基于微惯性传感器的生猪运动监测系统[J]. 畜牧与兽医, 2018, 50(11): 23-27. Hao Fuming, Tian Jianyan, Zheng Sheng, et al. Monitoring system of pig motion based on the micro inertial sensor [J]. Animal Husbandry & Veterinary Medicine, 2018, 50(11): 23-27. [7]陈冲, 刘星桥, 黄邵春, 等. 国内外家猪精细养殖研究进展[J]. 江苏农业科学, 2019, 47(6): 1-4. [8]王晓玉. 规模猪场疫病防控的要点[J]. 畜牧兽医科技信息, 2021(6): 144. [9]朱伟兴, 戴陈云, 黄鹏. 基于物联网的保育猪舍环境监控系统[J]. 农业工程学报, 2012, 28(11): 177-182. Zhu Weixing, Dai Chenyun, Huang Peng. Environmental control system based on IoT for nursery pig house [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(11): 177-182. [10]李颀, 窦轩, 王志鹏, 等. 基于CFD的猪舍小气候环境模糊控制系统[J]. 家畜生态学报, 2017, 38(5): 54-59. Li Qi, Dou Xuan, Wang Zhipeng, et al. Piggery microclimate fuzzy control system based on CFD [J]. Acta Ecologiae Animalis Domastici, 2017, 38(5): 54-59. [11]李嘉豪. 猪场环境智能巡检与监控机器人系统研究[D]. 赣州: 江西理工大学, 2022. Li Jiahao. Research on intelligent inspection and monitoring robot system for pig house environment [D]. Ganzhou: Jiangxi University of Science and Technology, 2022. [12]冷康民. 基于无线传感器网络的奶牛场环境参数调控系统的研究[D]. 武汉: 华中农业大学, 2016. Leng Kangmin. Study on the control system of dairy farm environmental parameters based on wireless sensor networks [D]. Wuhan: Huazhong Agricultural University, 2016. [13]Wang Y, Zheng W C, Shi H P, et al. Optimising the design of confined laying hen house insulation requirements in cold climates without using supplementary heat [J]. Biosystems Engineering, 2018, 174: 282-294. [14]连京华. “家禽舍内环境智能巡检机器人研究与应用”项目顺利通过验收[J]. 家禽科学, 2019(11): 61. [15]程维波, 吴德胜, 李辉, 等. 母猪智能化精准饲喂系统研究现状及展望[J]. 农业工程, 2021, 11(3): 37-42. Cheng Weibo, Wu Desheng, Li Hui, et al. Research status and prospect of intelligent precision feeding system for sow [J]. Agricultural Engineering, 2021, 11(3): 37-42. [16]Nedap livestock Management-Global leader in farming technology: Automatically separate sows from herd [EB/OL]. https:∥www.nedap-livestockmanagement.com/pigfarming/solutions/nedap-sowsense/sow-separation/, 2022-12-20. [17]方建军. 饲喂机器人的研究与开发[J]. 农机化研究, 2005(1): 158-160. Fang Jianjun. Study and development of feeding robot [J]. Journal of Agricultural Mechanization Research, 2005(1): 158-160. [18]杨秋妹, 肖德琴, 张根兴. 猪只饮水行为机器视觉自动识别[J]. 农业机械学报, 2018, 49(6): 232-238. Yang Qiumei, Xiao Deqin, Zhang Genxing. Automatic pig drinking behavior recognition with machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 232-238. [19]王伟强. 基于放牧时空轨迹数据的牧群采食行为研究[D]. 石河子: 石河子大学, 2017. Wang Weiqiang. Research for grazing behavior based on grazing spatio-temporal trajectory data [D]. Shihezi: Shihezi University, 2017. [20]李亿杨, 孙龙清, 孙鑫鑫. 基于多特征融合的粒子滤波生猪采食行为跟踪[J]. 农业工程学报, 2017, 33(S1): 246-252. Li Yiyang, Sun Longqing, Sun Xinxin. Automatic tracking of pig feeding behavior based on particle filter with multi-feature fusion [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(S1): 246-252. [21]Yang Q M, Xiao D Q, Lin S C. Feeding behavior recognition for group-housed pigs with the Faster R-CNN [J]. Computers and Electronics in Agriculture, 2018, 155: 453-460. [22]Maselyne J, Adriaens I, Huybrechts T, et al. Measuring the drinking behaviour of individual pigs housed in group using radio frequency identification (RFID) [J]. Animal, 2016, 10(9): 1557-1566. [23]Lao F, Brown-Brandl T, Stinn J P, et al. Automatic recognition of lactating sow behaviors through depth image processing [J]. Computers and Electronics in Agriculture, 2016, 125: 56-62. [24]Yang A Q, Huang H S, Zheng C, et al. High-accuracy image segmentation for lactating sows using a fully convolutional network [J]. Biosystems Engineering, 2018, 176: 36-47. [25]嵇杨培, 杨颖, 刘刚. 基于可见光光谱和YOLOv2的猪饮食行为识别[J]. 光谱学与光谱分析, 2020, 40(5): 1588-1594. Ji Yangpei, Yang Ying, Liu Gang. Recognition of pig eating and drinking behavior based on visible spectrum and YOLOv2 [J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1588-1594. [26]李菊霞, 李艳文, 牛帆, 等. 基于YOLOv4的猪只饮食行为检测方法[J]. 农业机械学报, 2021, 52(3): 251-256. Li Juxia, Li Yanwen, Niu Fan, et al. Pig diet behavior detection method based on YOLOv4 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 251-256. [27]朱军, 麻硕士, 慕厚春, 等. 种猪自动精细饲喂系统设计与试验[J]. 农业机械学报, 2010, 41(12): 174-177. Zhu Jun, Ma Shuoshi, Mu Houchun, et al. Design of auto-precision feeding system for pigs [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(12): 174-177. [28]杨毅, 王晶晶. 牧原:创新加快养猪行业智能化升级 激发乡村振兴内生动力[N]. 中国经济时报, 2021-06-04(004). [29]Nedap. Electronic sow feeding-automatic pig feeding-Nedap [EB/OL]. https:∥www.nedap-livestockmanagement.com/pigfarming/solutions/nedap-sowsense/electronic-sow-feeding/, 2022-12-21. [30]Anon. Total electronic animal mangementi [EB/OL]. http:∥www.osborelivestockequjoment.com/productteam/index.hn, 2022-12-21. [31]胡圣杰, 王树才. RFID技术在养猪业中的应用[J]. 湖北农机化, 2007(5): 24-25. [32]黄昊, 刘俊灵, 胡腾达, 等. 智能化母猪饲喂控制系统设计与试验[J]. 中国农机化学报, 2021, 42(10): 78-86. [33]黄向阳. 动态细分饲粮营养供给对肉鸡生产性能及相关基因表达的影响[D]. 北京: 中国农业科学院, 2017. Huang Xiangyang. Effects of dynamic segmentation of nutrient supply on growth performance and related genes expression of broilers [D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. [34]Abdanan Mehdizadeh S, Neves D P, Tscharke M, et al. Image analysis method to evaluate beak and head motion of broiler chickens during feeding [J]. Computers & Electronics in Agriculture, 2015, 114: 88-95. [35]沈明霞, 陆鹏宇, 刘龙申, 等. 多通道肉鸡自动饲喂、采食饮水量及体重检测装备[P]. 中国专利: CN109169405A, 2019-01-11. [36]Li G M, Zhao Y, Hailey R, et al. An ultra-high frequency radio frequency identification system for studying individual feeding and drinking behaviors of group-housed broilers [J]. Animal, 2019, 13(9): 2060-2069. [37]Li G M, Zhao Y, Purswell J L, et al. Analysis of feeding and drinking behaviors of group-reared broilers via image processing [J]. Computers and Electronics in Agriculture, 2020, 175: 105596. [38]吴洪, 芮国兴, 丁鹏, 等. 不同方式饲喂奶牛的奶产量和乳品质研究[J]. 畜牧兽医杂志, 2015, 34(5): 26-28. [39]丰顿科技. TMR智能监测系统 (iTMRSpy)[EB/OL]. http:∥www.foidn.com/ShowProducts.asp?id=162, 2019-10-23. [40]周雅婷, 许童羽, 陈春玲, 等. 基于神经网络算法的肉牛采食行为检测方法[J]. 沈阳农业大学学报, 2016, 47(6): 752-757. Zhou Yating, Xu Tongyu, Chen Chunling, et al. Detection method of beef cattle feeding behavior based on neural network algorithm [J]. Journal of Shenyang Agricultural University, 2016, 47(6): 752-757. [41]张宏鸣, 武杰, 李永恒, 等. 多目标肉牛进食行为识别方法研究[J]. 农业机械学报, 2020, 51(10): 259-267. Zhang Hongming, Wu Jie, Li Yongheng, et al. Recognition method of feeding behavior of multi-target beef cattle [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 259-267. [42]刘月峰, 边浩东, 何滢婕, 等. 基于幅值迭代剪枝的多目标奶牛进食行为识别方法[J]. 农业机械学报, 2022, 53(2): 274-281. Liu Yuefeng, Bian Haodong, He Yingjie, et al. Detection method of multi-objective cows feeding behavior based on iterative magnitude pruning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 274-281. [43]侯建君, 施正香, 李保明. 不同生长阶段长白猪体型特征的主成分分析[J]. 中国农业大学学报, 2006(3): 56-60. Hou Jianjun, Shi Zhengxiang, Li Baoming. Principal component analysis of Landrace's physical characteristics [J]. Journal of China Agricultural University, 2006(3): 56-60. [44]马丽, 张旭东, 邢子正, 等. 基于骨架扫描策略的生猪热红外视频目标跟踪方法[J]. 农业机械学报, 2019, 50(S1): 256-260, 242. Ma Li, Zhang Xudong, Xing Zizheng, et al. Automatic pig target tracking based on skeleton scanning strategy for thermal infrared video [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 256-260, 242. [45]沈明霞, 陆鹏宇, 刘龙申, 等. 基于红外热成像的白羽肉鸡体温检测方法[J]. 农业机械学报, 2019, 50(10): 222-229. Shen Mingxia, Lu Pengyu, Liu Longshen, et al. Body temperature detection method of ross broiler based on infrared thermography [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 222-229. [46]刘同海, 滕光辉, 付为森, 等. 基于机器视觉的猪体体尺测点提取算法与应用[J]. 农业工程学报, 2013, 29(2): 161-168. Liu Tonghai, Teng Guanghui, Fu Weisen, et al. Extraction algorithms and applications of pig body size measurement points based on computer vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 161-168. [47]滕光辉, 申志杰, 张建龙, 等. 基于Kinect传感器的无接触式母猪体况评分方法[J]. 农业工程学报, 2018, 34(13): 211-217. [48]Bewley J M, Peacock A M, Lewis O, et al. Potential for estimation of body condition scores in dairy cattle from digital images [J]. Journal of Dairy Science, 2008, 91(9): 3439-3453. [49]Azzaro G, Caccamo M, Ferguson J D, et al. Objective estimation of body condition score by modeling cow body shape from digital images [J]. Journal of Dairy Science, 2011, 94(4): 2126-2137. [50]Vieira A, Brandao S, Monteiro A, et al. Development and validation of a visual body condition scoring system for dairy goats with picture-based training [J]. Journal of Dairy Science, 2015, 98(9): 6597-6608. [51]徐金阳, 徐爱俊, 周素茵, 等. 基于Kinect相机的猪弯曲体尺测量算法研究[J]. 东北农业大学学报, 2021, 52(9): 77-85. Xu Jinyang, Xu Aijun, Zhou Suyin, et al. Research on the algorithm of curved body size measurement of pig based on Kinect camera [J]. Journal of Northeast Agricultural University, 2021, 52(9): 77-85. [52]Pieiro C, Morales J, Rodríguez M, et al. Big (pig) data and the internet of the swine things: A new paradigm in the industry [J]. Animal Frontiers, 2019, 9(2): 6-15. [53]Requejo J M, Garrido-lzard M, Correa E C, et al. Pig ear skin temperature and feed efficiency: Using the phase space to estimate thermoregulatory effort [J]. Biosystems Engineering, 2018, 174: 80-88. [54]Manteuffel C. Parturition detection in sows as test case for measuring activity behaviour in farm animals by means of radar sensors [J]. Biosystems Engineering, 2019, 184: 200-206. [55]童欣欣. 基于深度图像的母猪姿态识别与分析[D]. 广州: 华南农业大学, 2017. Tong Xinxin. Sow posture recognition and analysis based on depth image [D]. Guangzhou: South China Agricultural University, 2017. [56]薛月菊, 朱勋沐, 郑婵, 等. 基于改进Faster R-CNN识别深度视频图像哺乳母猪姿态[J]. 农业工程学报, 2018, 34(9): 189-196. Xue Yueju, Zhu Xunmu, Zheng Chan, et al. Lactating sow postures recognition from depth image of videos based on improved Faster R-CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 189-196. [57]甘海明, 薛月菊, 李诗梅, 等. 基于时空信息融合的母猪哺乳行为识别[J]. 农业机械学报, 2020, 51(S1): 357-363. Gan Haiming, Xue Yueju, Li Shimei, et al. Automatic sow nursing behaviour recognition based on spatio-temporal information fusion [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 357-363. [58]刘亚楠, 沈明霞, 刘龙申, 等. 基于机器视觉的母猪哺乳行为监测方法研究[J]. 南京农业大学学报, 2022, 45(2): 404-411. Liu Yanan, Shen Mingxia, Liu Longshen, et al. Research on monitoring method of sow's nursing behaviour based on machine vision [J]. Journal of Nanjing Agricultural University, 2022, 45(2): 404-411. [59]何灿隆, 沈明霞, 刘龙申, 等. 基于加速度传感器的肉鸡步态检测方法研究与实现[J]. 南京农业大学学报, 2019, 42(2): 365-372. He Canlong, Shen Mingxia, Liu Longshen, et al. The research and realization of the method for the gait detection in broilers based on acceleration sensor [J]. Journal of Nanjing Agricultural University, 2019, 42(2): 365-372. [60]刘章华, 魏凤歧, 李琦, 等. 基于二叉决策树分类模型的草原牛行为识别[J]. 黑龙江畜牧兽医, 2022(4): 53-58, 136. Liu Zhanghua, Wei Fengqi, Li Qi, et al. Behavior recognition of grassland cattle based on binary decision-tree classification model [J]. Heilongjiang Animal Science and Veterinary Medicine, 2022(4): 53-58, 136. [61]张配配, 张涛, Brad Belstra, 等. 母猪的发情检测[J]. 国外畜牧学(猪与禽), 2014(6): 4-11. Zhang Peipei, Zhang Tao, Brad Belstra, et al. Detection of estrus or heat [J]. Animal Science Abroad(Pigs and Poultry), 2014(6): 4-11. [62]杨亮, 裴孟侠, 肖强, 等. 母猪发情监测装置的设计[J]. 现代农业装备, 2019, 40(5): 40-43. Yang Liang, Pei Mengxia, Xiao Qiang, et al. Design of estrus monitoring device for sow [J]. Modern Agricultural Equipment, 2019, 40(5): 40-43. [63]Johnson J S, Shade K A. Characterizing body temperature and activity changes at the onset of estrus in replacement gilts [J]. Livestock Science, 2017, 199: 22-24. [64]申东东, 刘哲, 朱程林. 基于神经网络的母猪发情行为研究[J]. 科技风, 2019(6): 84. [65]Schwarz T, MarIopolska M, Nowicki J, et al. Effects of individual versus group housing system during the weaning-to-estrus interval on reproductive performance of sows [J]. Animal, 2021, 15(2): 100122. [66]Xu Z T, Sullivan R, Zhou J F, et al. Detecting sow vulva size change around estrus using machine vision technology [J]. Smart Agricultural Technology, 2023, 3: 100090. [67]Wang Y, Li S X, Zhang H, et al. A lightweight CNN-based model for early warning in sow oestrus sound monitoring [J]. Ecological Informatics, 2022, 72: 101863. [68]He R, Benhabiles H, Windal F, et al. A CNN-based methodology for cow heat analysis from endoscopic images [J]. Applied Intelligence, 2022, 52(8): 8372-8385. [69]翟静静, 刘则彰, 蒋思文. 某猪场母猪繁殖性能预测和logistic回归分析[J]. 猪业科学, 2020, 37(10): 48-54. Zhai Jingjing, Liu Zezhang, Jiang Siwen. Prediction of sow reproductive performance and logistic regression analysis in a pig farm [J]. Swine Industry Science, 2020, 37(10): 48-54. [70]Herpin P, Damon M, Dividich J L. Development of thermoregulation and neonatal survival in pigs [J]. Livestock Production Science, 2002, 78(1): 25-45. [71]Cornou C, Lundbye-Christensen S, Kristensen A R. Modelling and monitoring sows' activity types in farrowing house using acceleration data [J]. Computers and Electronics in Agriculture, 2011, 76(2): 316-324. [72]Manteuffel C, Hartung E, Schmidt M, et al. Towards qualitative and quantitative prediction and detection of parturition onset in sows using light barriers-ScienceDirect [J]. Computers and Electronics in Agriculture, 2015, 116: 201-210. [73]刘龙申, 沈明霞, 柏广宇, 等. 基于机器视觉的母猪分娩检测方法研究[J]. 农业机械学报, 2014, 45(3): 237-242. Liu Longshen, Shen Mingxia, Bo Guangyu, et al. Sows parturition detection method based on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(3): 237-242. [74]张光跃, 刘龙申, 沈明霞, 等. 基于超声波的母猪产前行为监测系统设计[J]. 中国农业大学学报, 2017, 22(8): 109-115. Zhang Guangyue, Liu Longshen, Shen Mingxia, et al. Monitoring system design of sow's antenatal behavior based on ultrasonic [J]. Journal of China Agricultural University, 2017, 22(8): 109-115. [75]张弛. 基于机器视觉和FPGA的母猪分娩智能监测系统研究与设计[D]. 南京: 南京农业大学, 2017. Zhang Chi. Research and implement of sow delivery intelligent detection system based on machine vision and FPGA [D]. Nanjing: Nanjing Agricultural University, 2017. [76]曾晓嘉. 基于深度学习的猪只分娩识别及仔猪跟踪系统[D]. 厦门: 厦门大学, 2018. Zeng Xiaojia. Pig delivery identification and piglet tracking system based on deep learning [D]. Xiamen: Xiamen University, 2018. [77]施宏, 沈明霞, 刘龙申, 等. 基于Kinect的哺乳期母猪姿态识别算法的研究[J]. 南京农业大学学报, 2019, 42(1): 177-183. Shi Hong, Shen Mingxia, Liu Longshen, et al. Study on recognition method of lactating sows' posture based on Kinect [J]. Journal of Nanjing Agricultural University, 2019, 42(1): 177-183. [78]沈明霞, 太猛, CEDRIC Okinda, 等. 基于深层卷积神经网络的初生仔猪目标实时检测方法[J]. 农业机械学报, 2019, 50(8): 270-279. Shen Mingxia, Tai Meng, CEDRIC Okinda, et al. Real-time detection method of newborn piglets based on deep convolution neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 270-279. [79]刘艳秋, 宣传忠, 武佩, 等. 基于K-means-BP神经网络的舍饲环境母羊产前运动行为分类识别[J]. 中国农业大学学报, 2021, 26(3): 86-95. Liu Yanqiu, Xuan Chuanzhong, Wu Pei, et al. Classification and recognition on movement behaviors of ewes in house feeding environment based on K-means and BP neural network [J]. Journal of China Agricultural University, 2021, 26(3): 86-95. [80]马晓晔. 猪流行性腹泻、传染性胃肠炎的预防[J]. 中国畜禽种业, 2021, 17(12): 122-123. [81]刘德旺. 精细养猪技术[C]∥ 现代化养猪企业经营管理研讨会论文集, 2004: 60-71. [82]龚永杰, 黎煊, 高云, 等. 基于矢量量化的猪咳嗽声识别[J]. 华中农业大学学报, 2017, 36(3): 119-124. Gong Yongjie, Li Xuan, Gao Yun, et al. Recognition of pig cough sound based on vector quantization [J]. Journal of Huazhong Agricultural University, 2017, 36(3): 119-124. [83]浦雪峰. 基于行为监测的病猪自动识别系统设计[D]. 镇江: 江苏大学, 2009. Pu Xuefeng. Design of automatic identification system of diseased pigs based on behavior monitoring [D]. Zhenjiang: Jiangsu University, 2009. [84]谢徽. 基于决策树支持向量机的猪只姿态分类与异常行为分析[D]. 太原: 太原理工大学, 2015. Xie Hui. Pig posture classification and abnormal behavior analysis based on decision tree support vector machine [D]. Taiyuan: Taiyuan University of Technology, 2015. [85]丁静. 基于机器视觉的断奶仔猪腹泻检测方法研究[D]. 南京: 南京农业大学, 2020. Ding Jing. Research on detection of diarrhea in weaned piglets based on machine vision [D]. Nanjing: Nanjing Agricultural University, 2020. [86]沈明霞, 王梦雨, 刘龙申, 等. 基于深度神经网络的猪咳嗽声识别方法[J]. 农业机械学报, 2022, 53(5): 257-266. Shen Mingxia, Wang Mengyu, Liu Longshen, et al. Recognition method of pig cough based on deep neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 257-266. [87]宋超. 基于深度学习的鸡蛋外观缺陷检测算法[D]. 贵阳: 贵州大学, 2017. Song Chao. Egg appearance defect detection algorithm based on deep learning [D]. Guiyang: Guizhou University, 2017. [88]贾咪咪. 基于机器视觉的禽蛋外部缺陷检测[D]. 杭州: 浙江工业大学, 2017. Jia Mimi. Detection of external defects in eggs based on machine vision [D]. Hangzhou: Zhejiang University of Technology, 2017. [89]王志豪, 李锐圳, 韩利芬, 等. 基于视觉SLAM的履带传动式智能拾蛋机器人[J]. 机电工程技术, 2022, 51(8): 231-235. Wang Zhihao, Li Ruizhen, Han Lifen, et al. An intelligent egg collecting robot based on visual SLAM [J]. Mechanical & Electrical Engineering Technology, 2022, 51(8): 231-235. [90]鲍鹏, 高青, 李建斌, 等. 挤奶机的结构原理及其分类、特点[J]. 中国奶牛, 2015(8): 58-60. [91]中国奶业协会. 2021中国奶业质量报告[M]. 北京: 中国农业科学技术出版社, 2021. [92]杨存志, 吴泽全, 郭洋. 挤奶机器人的结构设计[J]. 农机化研究, 2018, 40(4): 98-103. Yang Cunzhi, Wu Zequan, Guo Yang. The Structure design of milking robot [J]. Journal of Agricultural Mechanization Research, 2018, 40(4): 98-103. [93]王成军, 李少强. 基于TRIZ理论的转盘式挤奶机器人结构设计[J]. 科学技术与工程, 2022, 22(7): 2770-2775. Wang Chengjun, Li Shaoqiang. Design and analysis of a new rotary milking robot based on TRIZ theory [J]. Science Technology and Engineering, 2022, 22(7): 2770-2775. [94]姚维斌, 魏晓晖. 中小规模猪场粪污处理情况调查报告[J]. 当代畜牧, 2017(36): 62-65. [95]Doreswamy R, Deb R, De S. Potential use of piggery excreta as a viable source of bioethanol production [J]. Journal of Cleaner Production, 2021, 316: 128246. [96]Tongmee B, Tongsiri S, Unpaprom Y, et al. Sustainable development of feed formulation for farmed tilapia enriched with fermented pig manure to reduce production costs [J]. Science of the Total Environment, 2021, 801: 149614. [97]Jia D, Wang Y, Wang J H, et al. Lactobacillus animalis pZL8a: A potential probiotic isolated from pig feces for further research [J]. 3 Biotech, 2021, 11: 1-11. [98]杨婧, 钟慧, 潘欢, 等. 富磷型猪粪基生物炭肥对土壤—萝卜系统的影响[J]. 生态与农村环境学, 2020, 36(9): 1169-1176. Yang Jing, Zhong Hui, Pan Huan, et al. Effect of phosphorus enriched biochar fertilizer prepared from pig-manure on the soil-radish system [J]. Journal of Ecology and Rural Environment, 2020, 36(9): 1169-1176. [99]王德福, 黄会男, 张洪建, 等. 生猪养殖设施工程技术研究现状与发展分析[J]. 农业机械学报, 2018, 49(11): 1-14. Wang Defu, Huang Huinan, Zhang Hongjian, et al. Analysis of research status and development on engineering technology of swine farming facilities [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 1-14. [100]衣恒磊, 刘迎春, 于树涛, 等. 山东省莱阳市猪场粪污处理与资源化利用典型案例分析[J]. 猪业科学, 2022, 39(8): 96-99. [101]胡振楠, 孙红敏, 李晓明, 等. 猪舍自动清粪控制系统设计与实现[J]. 南方农机, 2021, 52(1): 8-11. [102]李保明, 王阳, 郑炜超, 等. 畜禽养殖智能装备与信息化技术研究进展[J]. 华南农业大学学报, 2021, 42(6): 18-26. Li Baoming, Wang Yang, Zheng Weichao, et al. Research progress on intelligent equipment and information technology for livestock and poultry breeding [J]. Journal of South China Agricultural University, 2021, 42(6): 18-26. [103]杨存志, 贺刚, 尧李慧, 等. 全自走牛舍清洁机器人的设计[J]. 农机化研究, 2017, 39(5): 90-94. Yang Cunzhi, He Gang, Yao Lihui, et al. Design of self-propelled barn cleaning robot [J]. Journal of Agricultural Mechanization Research, 2017, 39(5): 90-94. |
[1] | Zhao Siqi, Ding Weimin. Research progress on key technology of precision feeding in aquaculture [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(1): 42-53. |
[2] | Yuan Zhiyu, Zhao Yunhui, Wang Song, Zhao Zhuo, Wu Yujin, Wang Chunxin. Development and application of management and control system for intellectual sheep breeding based on Internet of Things platform [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(1): 54-61. |
[3] | Xiwen Luo. Artificial intelligence and plant protection mechanization [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2020, 1(1): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||