1 |
LIU J, YU S, HU S, et al. A diffuse reflectance portable near infrared spectroscopy system for the determination of biuret content in urea fertilizer [J]. Journal of Near Infrared Spectroscopy, 2023, 31: 33-40.
|
2 |
KAASENBROOD P, VAN DEN BERG P, REVALLIER L. Fertilizer contaminants, biuret formation in the manufacture of urea [J]. Journal of Agriculture and Food Chemistry, 1963, 11: 39-43.
|
3 |
OCHIAI K, NOMURA Y, UESUGi A, et al. Biuret toxicity induces accumulation of nitrogen-rich compounds in rice plants [J]. Plant and Soil, 2022, 485: 615-628.
|
4 |
LIU Z L, PAN J H. A practical method for extending the biuret assay to protein determination of corn-based products [J]. Food Chemistry, 2017, 224(JUN.1): 289-293.
|
5 |
高振, 卢彩云, 李洪文, 等. 基于计算机视觉的种子分布信息检测关键技术研究现状与趋势[J]. 智能化农业装备学报(中英文), 2023, 4(3): 50-60.
|
|
GAO Zhen, LU Caiyun, LI Hongwen, et al. Research progress and the prospect of crucial technology of seed spacing information detection based on computer vision [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(3): 50-60.
|
6 |
董晓娅, 王旭锐, 黄华杰, 等. 纳米通道适配体传感器对马拉硫磷的检测[J]. 排灌机械工程学报, 2022, 40(6): 635-641.
|
|
DONG Xiaoya, WANG Xurui, HUANG Huajie, et al. Detection of Malathion by nanochannel aptamer sensor [J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(6): 635-641.
|
7 |
郭文娟, 冯全. 基于类激活映射的可解释性方法在农作物检测识别中的发展现状与趋势[J]. 智能化农业装备学报(中英文), 2023, 4(4): 41-48.
|
|
GUO Wenjuan, FENG Quan. Development status and trends of interpretability methods based on class activation mapping in crop detection and recognition [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(4): 41-48.
|
8 |
ZHANG X A, HUANG X Y, XU Y W, et al. Single-step electrochemical sensing of ppt-level lead in leaf vegetables based on peroxidase-mimicking metal-organic framework [J]. Biosensors and Bioelectronics, 2020, 168: 112544.
|
9 |
UMAPATHI R, GHOREISHIAN S M, SONWAL S, et al. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables [J]. Coordination Chemistry Reviews, 2021, 453: 214305.
|
10 |
ZHANG X A, ZHU M C, JIANG Y J, et al. Simple electrochemical sensing for mercury ions in dairy product using optimal Cu2+-based metal-organic frameworks as signal reporting [J]. Journal of Hazardous Materials, 2020, 400: 123222.
|
11 |
BOURIGUA S, BOUSSEMA F, BOUAAZI D, et al. Sensitive electrochemical detection of l-tryptophan using a glassy carbon electrode modified with pectin extracted from Arthrocnemum indicum leaves [J]. Journal of Electroanalytical Chemistry, 2024, 953: 117998.
|
12 |
HUANG X W, HUANG C Y, ZHOU L L, et al. Allosteric switch for electrochemical aptasensor toward heavy metals pollution of Lentinus edodes sensitized with porphyrinic metal-organic frameworks [J]. Analytica Chimica Acta, 2023, 1278: 341752.
|
13 |
STEIJLEN A S M, PARRILLA M, VAN E R, et al. Dual microfluidic sensor system for enriched electrochemical profiling and identification of illicit drugs on-site [J]. Analytical Chemistry, 2024, 96: 590-598.
|
14 |
ZHANG X A, JIANG Y J, ZHU M C, et al. Electrochemical DNA sensor for inorganic mercury(II) ion at attomolar level in dairy product using Cu(II)-anchored metal-organic framework as mimetic catalyst [J]. Chemical Engineering Journal, 2020, 383: 123182.
|
15 |
MOHAMMED-SADHAKATHULLAH A H M, PAULO-MIRASOL S, MOLINA B G, et al. PLA-PEG-Cholesterol biomimetic membrane for electrochemical sensing of antioxidants [J]. Electrochimica Acta, 2024, 476: 143716.
|
16 |
SINGH P, MANDAL D, CHANDRA A, et al. Zinc stannate oxide perovskite nanomaterial based electrochemical detection of ammonia [J]. Sensors and Actuators: A. Physical, 2024, 366: 114955.
|