Journal of Intelligent Agricultural Mechanization ›› 2025, Vol. 6 ›› Issue (1): 1-14.DOI: 10.12398/j.issn.2096-7217.2025.01.001
WU Qing1,2(), WEI Runxuan1, ZHOU Le1, YANG Hao1, LIU Wanru1, XU Hongmei1,2(
)
Received:
2024-05-14
Revised:
2024-08-19
Online:
2025-02-15
Published:
2025-02-15
Corresponding author:
XU Hongmei
About author:
WU Qing,E-mail: wuqing@mail.hzau.edu.cn
Supported by:
CLC Number:
WU Qing, WEI Runxuan, ZHOU Le, YANG Hao, LIU Wanru, XU Hongmei. Lightweight fresh tea leaf recognition method based on improved YOLOv5s[J]. Journal of Intelligent Agricultural Mechanization, 2025, 6(1): 1-14.
Add to citation manager EndNote|Ris|BibTeX
URL: http://znhnyzbxb.niam.com.cn/EN/10.12398/j.issn.2096-7217.2025.01.001
模型 | 深度 | 宽度 | 参数量 /×106 M | 浮点运算量 FLOPs/G |
---|---|---|---|---|
YOLOv5n | 0.33 | 0.25 | 1.76 | 4.1 |
YOLOv5s | 0.33 | 0.50 | 7.02 | 15.8 |
YOLOv5m | 0.67 | 0.75 | 20.86 | 47.9 |
YOLOv5l | 1.00 | 1.00 | 46.15 | 108.3 |
YOLOv5x | 1.33 | 1.25 | 86.23 | 204.7 |
Table 1 YOLOv5 series parameter comparison
模型 | 深度 | 宽度 | 参数量 /×106 M | 浮点运算量 FLOPs/G |
---|---|---|---|---|
YOLOv5n | 0.33 | 0.25 | 1.76 | 4.1 |
YOLOv5s | 0.33 | 0.50 | 7.02 | 15.8 |
YOLOv5m | 0.67 | 0.75 | 20.86 | 47.9 |
YOLOv5l | 1.00 | 1.00 | 46.15 | 108.3 |
YOLOv5x | 1.33 | 1.25 | 86.23 | 204.7 |
Shuffle Block | PConv | SimAM | SIoU | 精确度 P/% | 召回率 R/% | 平均精度均值 mAP/% | 参数量 Params/×106 M | 浮点运算量 FLOPs/G | 权重文件大小 /MB |
---|---|---|---|---|---|---|---|---|---|
× | × | × | × | 79.1 | 72.1 | 82.4 | 7.02 | 15.8 | 13.67 |
√ | × | × | × | 78.2 | 69.1 | 80.4 | 0.85 | 1.8 | 1.85 |
× | √ | × | × | 82.3 | 72.3 | 82.1 | 7.20 | 16 | 14.03 |
× | × | √ | × | 82.1 | 72.7 | 82.5 | 7.29 | 17.2 | 14.20 |
√ | √ | × | × | 79.5 | 68.2 | 81.4 | 0.89 | 1.9 | 1.95 |
× | √ | √ | × | 80.9 | 73.1 | 82.6 | 7.48 | 17.4 | 14.56 |
√ | × | √ | × | 78.1 | 70.3 | 80.9 | 0.91 | 2.2 | 1.99 |
√ | √ | √ | × | 81.8 | 71.9 | 81.2 | 0.96 | 2.2 | 2.09 |
√ | √ | √ | √ | 81.8 | 72.5 | 82.4 | 0.96 | 2.2 | 2.09 |
Table 2 Network ablationtest
Shuffle Block | PConv | SimAM | SIoU | 精确度 P/% | 召回率 R/% | 平均精度均值 mAP/% | 参数量 Params/×106 M | 浮点运算量 FLOPs/G | 权重文件大小 /MB |
---|---|---|---|---|---|---|---|---|---|
× | × | × | × | 79.1 | 72.1 | 82.4 | 7.02 | 15.8 | 13.67 |
√ | × | × | × | 78.2 | 69.1 | 80.4 | 0.85 | 1.8 | 1.85 |
× | √ | × | × | 82.3 | 72.3 | 82.1 | 7.20 | 16 | 14.03 |
× | × | √ | × | 82.1 | 72.7 | 82.5 | 7.29 | 17.2 | 14.20 |
√ | √ | × | × | 79.5 | 68.2 | 81.4 | 0.89 | 1.9 | 1.95 |
× | √ | √ | × | 80.9 | 73.1 | 82.6 | 7.48 | 17.4 | 14.56 |
√ | × | √ | × | 78.1 | 70.3 | 80.9 | 0.91 | 2.2 | 1.99 |
√ | √ | √ | × | 81.8 | 71.9 | 81.2 | 0.96 | 2.2 | 2.09 |
√ | √ | √ | √ | 81.8 | 72.5 | 82.4 | 0.96 | 2.2 | 2.09 |
类别 | 精确率 P/% | 召回率 R/% | 平均精度 均值 mAP/% |
---|---|---|---|
全类别 | 81.8 | 72.5 | 82.4 |
一芽一叶 | 79.5 | 75.5 | 85.3 |
一芽二叶 | 86.5 | 79.1 | 89.4 |
单芽 | 79.9 | 61.2 | 72.1 |
Table 3 Three-classification target detection performance of YOLOv5s-SPCS
类别 | 精确率 P/% | 召回率 R/% | 平均精度 均值 mAP/% |
---|---|---|---|
全类别 | 81.8 | 72.5 | 82.4 |
一芽一叶 | 79.5 | 75.5 | 85.3 |
一芽二叶 | 86.5 | 79.1 | 89.4 |
单芽 | 79.9 | 61.2 | 72.1 |
主干网络 | 平均精度均值 mAP/% | 参数量 Params/×106 M | 浮点运算量 FLOPs/G | 模型大小 /MB | 帧率 FPS/(帧·s-1) |
---|---|---|---|---|---|
MobileNetV3 | 81.9 | 1.38 | 2.3 | 2.92 | 52.68 |
GhostNet | 83.1 | 5.08 | 10.6 | 10.03 | 38.33 |
ShuffleNetV2 | 82.4 | 0.96 | 2.2 | 2.09 | 67.87 |
Table 4 Comparison experimental of different lightweight approaches
主干网络 | 平均精度均值 mAP/% | 参数量 Params/×106 M | 浮点运算量 FLOPs/G | 模型大小 /MB | 帧率 FPS/(帧·s-1) |
---|---|---|---|---|---|
MobileNetV3 | 81.9 | 1.38 | 2.3 | 2.92 | 52.68 |
GhostNet | 83.1 | 5.08 | 10.6 | 10.03 | 38.33 |
ShuffleNetV2 | 82.4 | 0.96 | 2.2 | 2.09 | 67.87 |
损失函数 | 平均精度均值 mAP/% | 检测时间 /ms | 帧率 FPS/(帧·s-1) |
---|---|---|---|
GIoU | 81.7 | 15.2 | 65.42 |
DIoU | 82.3 | 15.1 | 66.30 |
CIoU | 81.5 | 15.2 | 66.21 |
EIoU | 82.4 | 14.8 | 67.32 |
SIoU | 82.4 | 14.7 | 67.87 |
Table 5 Comparison experimental using different IoU
损失函数 | 平均精度均值 mAP/% | 检测时间 /ms | 帧率 FPS/(帧·s-1) |
---|---|---|---|
GIoU | 81.7 | 15.2 | 65.42 |
DIoU | 82.3 | 15.1 | 66.30 |
CIoU | 81.5 | 15.2 | 66.21 |
EIoU | 82.4 | 14.8 | 67.32 |
SIoU | 82.4 | 14.7 | 67.87 |
模型 | 精确率 P/% | 平均精度均值 mAP/% | 参数量 Params/×106 M | 浮点运算量 FLOPs/G | 模型大小 /MB |
---|---|---|---|---|---|
Faster R-CNN | - | 72.2 | 136.73 | 369.8 | 521.60 |
SSD-300 | - | 63.7 | 23.88 | 61.0 | 91.63 |
YOLOv3 | 80.9 | 82.1 | 61.51 | 154.6 | 117.73 |
YOLOv3-tiny | 81.3 | 79.4 | 8.67 | 12.9 | 16.63 |
YOLOv4 | 80.2 | 82.5 | 60.40 | 130.7 | 115.80 |
YOLOv4-tiny | 79.6 | 81.6 | 3.07 | 6.4 | 5.96 |
YOLOv5s | 79.1 | 82.4 | 7.02 | 15.8 | 13.67 |
YOLOv7 | 83.3 | 81.9 | 37.21 | 105.1 | 71.32 |
YOLOv5s-SPCS | 81.8 | 82.4 | 0.96 | 2.2 | 2.09 |
Table 6 Comparison experimental of different detection models
模型 | 精确率 P/% | 平均精度均值 mAP/% | 参数量 Params/×106 M | 浮点运算量 FLOPs/G | 模型大小 /MB |
---|---|---|---|---|---|
Faster R-CNN | - | 72.2 | 136.73 | 369.8 | 521.60 |
SSD-300 | - | 63.7 | 23.88 | 61.0 | 91.63 |
YOLOv3 | 80.9 | 82.1 | 61.51 | 154.6 | 117.73 |
YOLOv3-tiny | 81.3 | 79.4 | 8.67 | 12.9 | 16.63 |
YOLOv4 | 80.2 | 82.5 | 60.40 | 130.7 | 115.80 |
YOLOv4-tiny | 79.6 | 81.6 | 3.07 | 6.4 | 5.96 |
YOLOv5s | 79.1 | 82.4 | 7.02 | 15.8 | 13.67 |
YOLOv7 | 83.3 | 81.9 | 37.21 | 105.1 | 71.32 |
YOLOv5s-SPCS | 81.8 | 82.4 | 0.96 | 2.2 | 2.09 |
1 | 梅宇, 张朔. 2022年中国茶叶生产与内销形势分析[J]. 中国茶叶, 2023, 45(4): 25-30. |
MEI Yu, ZHANG Shuo. Analysis of China's tea production and domestic sales in 2022 [J]. China Tea, 2023, 45(4): 25-30. | |
2 | 高震宇, 王安, 刘勇, 等. 基于卷积神经网络的鲜茶叶智能分选系统研究[J]. 农业机械学报, 2017, 48(7): 53-58. |
GAO Zhenyu, WANG An, LIU Yong, et al. Intelligent fresh-tea-leaves sorting system research based on convolution neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 53-58. | |
3 | 韩余, 宋志禹, 陈巧敏. 4CJ-1200F智能采茶机设计与试验[J]. 智能化农业装备学报(中英文), 2022, 3(1): 1-6. |
HAN Yu, SONG Zhiyu, CHEN Qiaomin. Design and experiment of 4CJ-1200F intelligent tea plucking machine [J]. Journal of Intelligent Agricultural Mechanization, 2022, 3(1): 1-6. | |
4 | 胡程喜, 谭立新, 王文胤, 等. 基于改进DeepLabV3+的轻量化茶叶嫩芽采摘点识别模型[J]. 智慧农业(中英文), 2024, 6(5): 119-127. |
HU Chengxi, TAN Lixin, WANG Wenyin, et al. Lightweight tea shoot picking point recognition model based on improved DeepLabV3+ [J]. Smart Agriculture, 2024, 6(5): 119-127. | |
5 | 张兰兰, 董迹芬, 唐萌, 等. 名优茶机采鲜叶分级技术研究[J]. 浙江大学学报(农业与生命科学版), 2012, 38(5): 593-598. |
ZHANG Lanlan, DONG Jifen, TANG Meng, et al. Classification technology of machine-plucking high quality tea [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 593-598. | |
6 | 唐小林, 李文萃, 范起业. 机采茶鲜叶分类分级技术及相关设备研究进展[J]. 中国茶叶加工, 2015(2): 5-8. |
TANG Xiaolin, LI Wencui, FAN Qiye. Research on the classification technology and the grading equipment of machine-plucking fresh leaves [J]. China Tea Processing, 2015(2): 5-8. | |
7 | 孙道宗, 张振宇, 陈俊聪, 等. 一种基于深度学习的端到端生菜无损鲜重估测模型的建立[J]. 南京农业大学学报, 2024, 47(6): 1212-1220. |
SUN Daozong, ZHANG Zhenyu, CHEN Juncong, et al . A model for end-to-end non-destructive fresh weight estimation of lettuce based on deep learning [J]. Journal of Nanjing Agricultural University, 2024, 47(6): 1212-1220. | |
8 | 黄印. 基于机器学习的鲜茶叶分类研究[D]. 武汉: 中南民族大学, 2021. |
HUANG Yin. Research on classification of fresh tea based on machine learning [D]. Wuhan: South-Central Minzu University, 2021. | |
9 | 范婷婷. 基于高光谱成像技术的茶叶无损检测方法研究[D]. 天津: 河北工业大学, 2021. |
FAN Tingting. Research on nondestructive detection method of tea based on hyperspectral imaging technology [D]. Tianjin: Hebei University of Technology, 2021. | |
10 | 陈忠辉. 基于计算机视觉的茶叶嫩芽识别方法研究[D]. 贵阳: 贵州大学, 2022. |
CHEN Zhonghui. Research on the method of tea sprout recognition based on computer vision [D]. Guiyang: Guizhou University, 2022. | |
11 | 邢洁洁, 谢定进, 杨然兵, 等. 基于YOLOv5s的农田垃圾轻量化检测方法[J]. 农业工程学报, 2022, 38(19): 153-161. |
XING Jiejie, XIE Dingjin, YANG Ranbing, et al. Lightweight detection method for farmland waste based on YOLOv5s [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(19): 153-161. | |
12 | SHANG Y Y, XU X S, JIAO Y T, et al. Using lightweight deep learning algorithm for real-time detection of apple flowers in natural environments [J]. Computers and Electronics in Agriculture, 2023, 207: 107765. |
13 | 黄家才, 唐安, 陈光明, 等. 基于Compact-YOLO v4的茶叶嫩芽移动端识别方法[J]. 农业机械学报, 2023, 54(3): 282-290. |
HUANG Jiacai, TANG An, CHEN Guangming, et al. Mobile recognition solution of tea buds based on Compact-YOLO v4 algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3): 282-290. | |
14 | ZHU L X, ZHANG Z H, LIN G C, et al. Detection and localization of tea bud based on improved YOLOv5s and 3D point cloud processing [J]. Agronomy, 2023, 13(9): 2412. |
15 | GUI Z Y, CHEN J N, LI Y, et al. A lightweight tea bud detection model based on Yolov5 [J]. Computers and Electronics in Agriculture, 2023, 205: 107636. |
16 | 王梦妮, 顾寄南, 王化佳, 等. 基于改进YOLOv5s模型的茶叶嫩芽识别方法[J]. 农业工程学报, 2023, 39(12): 150-157. |
WANG Mengni, GU Jinan, WANG Huajia, et al. Method for identifying tea buds based on improved YOLOv5s model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(12): 150-157. | |
17 | 白强, 高荣华, 赵春江, 等. 基于改进YOLOV5s网络的奶牛多尺度行为识别方法[J]. 农业工程学报, 2022, 38(12): 163-172. |
BAI Qiang, GAO Ronghua, ZHAO Chunjiang, et al. Multi-scale behavior recognition method for dairy cows based on improved YOLOV5s network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(12): 163-172. | |
18 | WOLPERT D H, MACREADY W G. No free lunch theorems for optimization [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. |
19 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey: IEEE, 2017: 936-944. |
20 | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey: IEEE, 2018: 8759-8768. |
21 | MA N N, ZHANG X Y, ZHENG H T, et al. ShufflenetV2: Practical guidelines for efficient CNN architecture design [C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 116-131. |
22 | ZHANG X Y, ZHOU X Y, LIN M X, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 6848-6856. |
23 | CHEN J R, KAO S H, HE H, et al. Run, Don't walk: Chasing higher FLOPS for faster neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 12021-12031. |
24 | YANG L X, ZHANG R Y, LI L D, et al. SimAM: A simple, parameter-free attention module for convolutional neural networks [C]// International Conference on Machine Learning. PMLR, 2021: 11863-11874. |
25 | GEVORGYAN Z. SIoU loss: More powerful learning for bounding box regression [J]. arXiv preprint arXiv: , 2022. |
26 | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3 [C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey: IEEE, 2019: 1314-1324. |
27 | HAN K, WANG Y H, TIAN Q, et al. GhostNet: More features from cheap operations [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey: IEEE, 2020: 1577-1586. |
28 | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression [C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey: IEEE, 2019: 658-666. |
29 | ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation [J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586. |
30 | ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IoU loss for accurate bounding box regression [J]. Neurocomputing, 2022, 506: 146-157. |
31 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149. |
32 | 周华茂, 王婧, 殷华, 等. 基于改进 Mask R-CNN 模型的秀珍菇表型参数自动测量方法[J]. 智慧农业(中英文), 2023, 5(4): 117-126. |
ZHOU Huamao, WANG Jing, YIN Hua, et al. Phenotype analysis of Pleurotus geesteranus based on improved Mask R-CNN [J]. Smart Agriculture, 2023, 5(4): 117-126. | |
33 | 郭小燕,于帅卿 . 一种轻量级 YOLOv5S 农作物虫害目标检测模型[J]. 南京农业大学学报,2024,47(5): 1009-1018. |
GUO Xiaoyan, YU Shuaiqing . A lightweight YOLOv5S crop pest target detection model[J]. Journal of Nanjing Agricultural University, 2024, 47(5): 1009-1018. | |
34 | REDMON J, FARHADI A. Yolov3: An incremental improvement [J]. arXiv preprint arXiv: , 2018. |
35 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection [J]. arXiv preprint arXiv: , 2020. |
36 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey: IEEE, 2023: 7464-7475. |
37 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization [C]// Proceedings of the IEEE International Conference on Computer Vision. 2017: 618-626. |
[1] | WANG Yuanhong, YANG Zhiming, WANG Qi, LU Jinzhu, GAO Junfeng. Design and experiment of tea bud recognition method and light source of recognition system based on YOLOv5-SPD [J]. Journal of Intelligent Agricultural Mechanization, 2024, 5(3): 33-43. |
[2] | GAO Ning, ZHANG Anqi, MEI Hebo, YANG Xinghua, GAN Lei, MENG Zhijun. Current status and development trends of soil moisture monitoring technologies [J]. Journal of Intelligent Agricultural Mechanization, 2024, 5(3): 51-62. |
[3] | GUO Wenjuan, FENG Quan. Development status and trends of interpretability methods based on class activation mapping in crop detection and recognition [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(4): 41-48. |
[4] | Hongjun Wang, Xiaoyu Ji, Hui Zhao, Youjun Yue. SENet optimized Deeplabv3+ freshwater fish body semantic segmentation* [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2021, 2(1): 36-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||