Journal of Intelligent Agricultural Mechanization ›› 2025, Vol. 6 ›› Issue (1): 99-110.DOI: 10.12398/j.issn.2096-7217.2025.01.010
SHAO Meihong1(), WU Qianying2, ZHAO Fujian3, WANG Jin2, HE Yong2,4, TANG Rongnian5, MOSTAFA Rastgou2, LI Wenyoujia2, JIANG Qianjing2(
)
Received:
2024-05-30
Revised:
2024-06-24
Online:
2025-02-15
Published:
2025-02-15
Corresponding author:
JIANG Qianjing
About author:
SHAO Meihong,E-mail: hzjdsmh@163.com
Supported by:
CLC Number:
SHAO Meihong, WU Qianying, ZHAO Fujian, WANG Jin, HE Yong, TANG Rongnian, MOSTAFA Rastgou, LI Wenyoujia, JIANG Qianjing. A review of current GHG emissions in Chinese farmland and the carbon sequestration and emission reduction technologies[J]. Journal of Intelligent Agricultural Mechanization, 2025, 6(1): 99-110.
Add to citation manager EndNote|Ris|BibTeX
URL: http://znhnyzbxb.niam.com.cn/EN/10.12398/j.issn.2096-7217.2025.01.010
1 | Intergovernmental Panel on Climate Change. AR6 Synthesis Report: Climate Change 2023 [R]. https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_Longe r Report.pdf, 2024-10-20. |
2 | HAN J Y, QU J S, MARASENI T N, et al. A critical assessment of provincial-level variation in agricultural GHG emissions in China [J]. Journal of Environmental Management, 2021, 296: 113190. |
3 | 胡向东, 王济民. 中国畜禽温室气体排放量估算[J]. 农业工程学报, 2010, 26(10): 247-252. |
HU Xiangdong, WANG Jimin. Estimation of livestock greenhouse gases discharge in China [J]. Transactions of the CSAE, 2010, 26(10): 247-252. | |
4 | 于法稳. 新时代农业绿色发展动因、核心及对策研究[J]. 中国农村经济, 2018(5): 19-34. |
YU Fawen. An analysis of the reasons, core and countermeasures of agricultural green development in the new era [J]. Chinese Rural Economy, 2018(5): 19-34. | |
5 | 巫玉平. 海南省杂交水稻制种产业发展前景分析[J]. 农业展望, 2013, 9(12): 43-45. |
WU Yuping. Prospect of hybrid rice seed production industry development in Hainan Province[J]. Agricultural Outlook, 2013, 9(12): 43-45. | |
6 | DI MATTEO J A, FERREYRA J M, CERRUDO A A, et al. Yield potential and yield stability of Argentine maize hybrids over 45 years of breeding [J]. Field Crops Research, 2016, 197: 107-116. |
7 | MAYER Z, SASVÁRI Z, SZENTPÉTERI V, et al. Effect of long-term cropping systems on the diversity of the soil bacterial communities [J]. Agronomy, 2019, 9(12): 878. |
8 | 李林蓉, 冯建路, 刘苗苗, 等. 作物种植模式对土壤微生物和农田有害生物的影响[J]. 中国农学通报, 2021, 37(29): 99-106. |
LI Linrong, FENG Jianlu, LIU Miaomiao, et al. Effect of crop planting patterns on soil microorganisms and crop pests in farmland [J]. Chinese Agricultural Science Bulletin, 2021, 37(29): 99-106. | |
9 | LI C J, HOFFLAND E, KUYPER T W, et al. Syndromes of production in intercropping impact yield gains [J]. Nature Plants, 2020, 6(6): 653-660. |
10 | RUSU T. Energy efficiency and soil conservation in conventional, minimum tillage and no-tillage [J]. International Soil and Water Conservation Research, 2014, 2(4): 42-49. |
11 | 崔思远, 曹光乔. 秸秆还田年数对稻麦轮作农田土壤团聚体碳氮分布的影响[J]. 智能化农业装备学报(中英文), 2022, 3(1): 20-26. |
CUI Siyuan, CAO Guangqiao. Effects of straw return years on organic carbon and total nitrogen distribution in soil aggregates from rice-wheat rotation fields [J]. Journal of Intelligent Agricultural Mechanization, 2022, 3(1): 20-26. | |
12 | PLAZA-BONILLA D, NOLOT J M, PASSOT S, et al. Grain legume-based rotations managed under conventional tillage need cover crops to mitigate soil organic matter losses [J]. Soil and Tillage Research, 2016, 156: 33-43. |
13 | 徐庆贤, 刘芸, 罗晓建, 等. 养鸡发酵床垫料中氨氮降解菌的分离及鉴定[J]. 中国沼气, 2024, 42(1): 42-46. |
XU Qingxian, LIU Yun, LUO Xiaojian, et al. Isolation and identification bacteria for efficient removal of amine nitrogen from fermentation mattress material [J]. China Biogas, 2024, 42(1): 42-46. | |
14 | TONITTO C, DAVID M B, DRINKWATER L E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics [J]. Agriculture, Ecosystems & Environment, 2006, 112(1): 58-72. |
15 | 廖前超, 李亮, 肖洪环, 等. 测土配方施肥对土壤养分与小麦产量与品质影响研究[J]. 中国沼气, 2024, 42(4): 10-13. |
LIAO Qianchao, LI Liang, XIAO Honghuan, et al. study of soil nutrients and wheat yield and quality effected by soil testing formula fertilizer [J]. China Biogas, 2024, 42(4): 10-13. | |
16 | XIA L L, LAM S K, CHEN D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis [J]. Global Change Biology, 2017, 23(5): 1917-1925. |
17 | 温延臣, 李燕青, 袁亮, 等. 长期不同施肥制度土壤肥力特征综合评价方法[J]. 农业工程学报, 2015, 31(7): 91-99. |
WEN Yanchen, LI Yanqing, YUAN liang, et. al . Comprehensive assessment methodology of soil fertility under different fertilization regimes in North China [J]. Transaction of the Chinese Society of Agriculture Engineering, 2015, 31(7): 91-99. | |
18 | ZERULLA W, BARTH T, DRESSEL J, et al. 3, 4-Dimethylpyrazole phosphate (DMPP)-a new nitrification inhibitor for agriculture and horticulture [J]. Biology and fertility of soils, 2001, 34(2): 79-84. |
19 | YANG M, FANG Y T, SUN D, et al. Efficiency of two nitrification inhibitors (dicyandiamide and 3,4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: A meta-analysis [J]. Scientific reports, 2016, 6: 22075. |
20 | QIAO C L, LIU L L, HU S J, et al. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input [J]. Global Change Biology, 2015, 21(3): 1249-1257. |
21 | GUO X W, SHUKLA M K, WU D, et al. Plant density, irrigation and nitrogen management: three major practices in closing yield gaps for agricultural sustainability in North-west China [J]. Frontiers of Agricultural Science and Engineering, 2021, 8(4): 525. |
22 | 孙梦遥, 徐岚俊, 李小龙, 等. 不同节水方式对油菜水分利用、分配及产量的影响[J]. 中国农业科技导报, 2021, 23(9): 138-143. |
SUN Mengyao, XU Lanjun, LI Xiaolong, et al. Influences of different water-saving methods on water utilization, distribution and yield of rape [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 138-143. | |
23 | 欧阳扬, 李叙勇. 干湿交替频率对不同土壤CO2和N2O释放的影响[J]. 生态学报, 2013, 33(4): 1251-1259. |
OUYANG Yang, LI Xuyong. Impacts of drying-wetting cycles on CO2 and N2O emissions from soils in different ecosystems [J]. Acta Ecologica Sinica, 2013, 33(4): 1251-1259. | |
24 | 王保君, 胡乃娟, 顾泽海, 等. 稻秆还田方式对稻麦轮作农田CH4和N2O排放的影响[J]. 南京农业大学学报, 2017, 40(3): 367-375. |
WANG Baojun, HU Naijuan, GU Zehai, et al. Impact of rice straw return methods on CH4 and N2O emissions across a rice-wheat rotation [J]. Journal of Nanjing Agricultural University, 2017, 40(3): 367-375. | |
25 | 刘鑫. 不同水肥管理措施对旱地小麦产量与水分利用效率的影响研究[D]. 杨凌: 西北农林科技大学, 2016. |
26 | 蔡延江, 丁维新, 项剑. 土壤N2O和NO产生机制研究进展[J]. 土壤, 2012, 44(5): 712-718. |
CAI Yanjiang, DING Weixin, XIANG Jian. Mechanisms of nitrous oxide and nitric oxide production in soils: A review [J]. Soils, 2012, 44(5): 712-718. | |
27 | 陈慧玲. 水肥耦合集成灌溉与传统高效节水灌溉效益对比分析[J]. 地下水, 2020, 42(3): 100-102. |
28 | FAO联合国粮食及农业组织[EB/OL]. , 2018. |
29 | CAI Z C, XING G X, SHEN G Y, et al. Measurements of CH4 and N2O emissions from rice paddies in Fengqiu, China [J]. Soil Science and Plant Nutrition, 1999, 45(1): 1-13. |
30 | CHENG W G, KIMANI S M, KANNO T, et al. Forage rice varieties Fukuhibiki and Tachisuzuka emit larger CH4 than edible rice Haenuki [J]. Soil Science and Plant Nutrition, 2018, 64(1): 77-83. |
31 | JIANG Y, VAN GROENIGEN K J, HUANG S, et al. Higher yields and lower methane emissions with new rice cultivars [J]. Global Change Biology, 2017, 23(11): 4728-4738. |
32 | CAI Z C, SHAN Y H, XU H. Effects of nitrogen fertilization on CH4 emissions from rice fields [J]. Soil Science and Plant Nutrition, 2007, 53(4): 353-361. |
33 | 李香兰, 徐华, 蔡祖聪. 水分管理影响稻田氧化亚氮排放研究进展[J]. 土壤, 2009, 41(1): 1-7. |
LI Xianglan, XU Hua, CAI Zucong. Effect of water management on nitrous oxide emission from rice paddy field: A review [J]. Soils, 2009, 41(1): 1-7. | |
34 | ELSORAGABY S, YAHYA A, MAHADI M R, et al. Analysis of energy use and greenhouse gas emissions (GHG) of transplanting and broadcast seeding wetland rice cultivation [J]. Energy, 2019, 189: 116160. |
35 | 刘志伟, 刘娟, 吴家森, 等. 生物炭和腐殖酸施用对稻麦轮作系统CH4和N2O综合温室效应的影响[J]. 农业工程学报, 2023, 39(11): 220-229. |
LIU Zhiwei, LIU Juan, WU Jiasen, et al. Effects of biochar and humic acid application on global warming potentials of CH4 and N2O in a rice-wheat rotation system [J]. Transaction of the Chinese Society of Agriculture Engineering, 2023, 39(11): 220-229. | |
36 | 何楚. 不同种养模式稻田生态系统服务功能及价值评估[D]. 武汉: 华中农业大学, 2023. |
37 | WATANABE A, TAKEDA T, KIMURA M. Evaluation of origins of CH4 carbon emitted from rice paddies [J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D19): 23623-23629. |
38 | 邵美红, 孙加焱, 阮关海, 等. 稻田温室气体排放与减排研究综述[J]. 浙江农业学报, 2011, 23(1): 181-187. |
SHAO Meihong, SUN Jiayan, RUAN Guanhai. Review on greenhouse gases emission and the reduction technology in rice fields [J]. Acta Agriculturae Zhejiangensis, 2011, 23(1): 181-187. | |
39 | AULAKH M S, WASSMANN R, BUENO C, et al. Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil [J]. Plant and Soil, 2001, 230(1): 77-86. |
40 | 张鲜鲜, 毕俊国, 孙会峰, 等. 旱管种植节水抗旱稻的温室气体减排效应研究[J]. 上海农业学报, 2022, 38(4): 134-140. |
ZHANG Xianxian, BI Junguo, SUN Huifeng, et al. Greenhouse gas mitigation potential of water-saving and drought-resistance rice under dry cultivation [J]. Acta Agriculturae Shanghai, 2022, 38(4): 134-140. | |
41 | 徐丹. 寒地黑土稻田水肥管理与温室气体排放关系研究[D]. 哈尔滨: 东北农业大学, 2016. |
42 | 王强盛. 稻田种养结合循环农业温室气体排放的调控与机制[J]. 中国生态农业学报, 2018, 26(5): 633-642. |
WANG Qiangsheng. Regulation and mechanism of greenhouse gas emissions of circular agriculture ecosystem of planting and breeding in paddy [J]. Chinese Journal of Eco-Agriculture, 2018, 26(5): 633-642. | |
43 | 焦燕, 黄耀. 影响农田氧化亚氮排放过程的土壤因素[J]. 气候与环境研究, 2003, 8(4): 457-466. |
JIAO Yan, HUANG Yao. Influence of soil properties on N2O emissions from farmland [J]. Climatic and Environmental Research, 2003, 8(4): 457-466. | |
44 | 李香兰, 徐华, 蔡祖聪. 稻田CH4和N2O排放消长关系及其减排措施 [J]. 农业环境科学学报, 2008, 27(6): 2123-2130. |
LI Xianglan, XU Hua, CAI Zucong. Trade-off relationship and mitigation options of methane and nitrous oxide emissions from rice paddy field [J]. Journal of Argo-Environment Science, 2008, 27(6): 2123-2130. | |
45 | HUA X, XING G X, CAI Z C, et al. Nitrous oxide emissions from three rice paddy fields in China [J]. Nutrient Cycling in Agroecosystems, 1997, 49(1): 23-28. |
46 | LIAO B, WU X, YU Y F, et al. Effects of mild alternate wetting and drying irrigation and mid-season drainage on CH4 and N2O emissions in rice cultivation [J]. Science of the Total Environment, 2020, 698: 134212. |
47 | SNYDER C S, BRUULSEMA T W, JENSEN T L, et al. Review of greenhouse gas emissions from crop production systems and fertilizer management effects [J]. Agriculture, Ecosystems & Environment, 2009, 133(3/4): 247-266. |
48 | CAI Z C, SHAN Y H, XU H. Effects of nitrogen fertilization on CH4 emissions from rice fields [J]. Soil Science and Plant Nutrition, 2007, 53(4): 353-361. |
49 | 杨印生, 韦鑫. 低碳农业机械化的发展逻辑、影响因素与实现路径[J]. 智慧农业(中英文), 2023, 5(4): 150-159. |
YANG Yinsheng, WEI Xin. The development logic, influencing factors and realization path for low-carbon agricultural mechanization [J]. Smart Agriculture, 2023, 5(4): 150-159. | |
50 | 陶冶. 不同种植方式下水稻产量、水氮利用效率及稻田温室气体排放比较研究[D]. 武汉: 华中农业大学, 2016. |
51 | 胡国辉, 陈惠哲, 张玉屏, 等. 生物降解膜覆盖对水稻温室气体排放及产量的影响[J]. 生态环境学报, 2020, 29(5): 977-986. |
52 | GAO H H, LIU Q, GONG D Z, et al. Biodegradable film mulching reduces the climate cost of saving water without yield penalty in dryland rice production [J]. Resources, Conservation & Recycling, 2023, 197: 107071. |
53 | 逯非, 王效科, 韩冰, 等. 稻田秸秆还田: 土壤固碳与甲烷增排[J]. 应用生态学报, 2010, 21(1): 99-108. |
LU Fei, WANG Xiaoke, HAN Bing, et al. Straw return to rice paddy: Soil carbon sequestration and increased methane emission [J]. Chinese Journal of Applied Ecology, 2010, 21(1): 99-108. | |
54 | WU Z, ZHANG X, DONG Y B, et al. Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system: six-year field observation and meta-analysis [J]. Agricultural and Forest Meteorology, 2019, 278: 107625. |
55 | 刘畅, 迟道才, 张丰, 等. 稻草生物炭对干湿交替稻田CH4和N2O排放的影响[J]. 农业工程学报, 2023, 39(14): 232-242. |
LIU Chang, CHI Daocai, ZHANG Feng, et al. Effects of rice straw biochar on CH4 and N2O emissions in alternating wetting and drying rice fields [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(14): 232-242. | |
56 | 韩自强, 宋贺, 夏炎, 等. 秸秆还田下生物炭和硫酸铵对稻田N2O和CH4排放的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(2): 135-143. |
HAN Ziqiang, SONG He, XIA Yan, et al. Effects of biochar and ammonium sulfate on N2O and CH4 emissions from paddy soil with straw returning application [J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(2): 135-143. | |
57 | SMITH P, MARTINO D, CAI Z C, et al. Greenhouse gas mitigation in agriculture [J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2008, 363(1492): 789-813. |
58 | GALLAGHER P W, RICHEY J. Growing biomass fuel industry, declining local forage demands, and changing greenhouse gas emissions from US agriculture: A case study [C]// Linköping Electronic Conference Proceedings, Proceedings of the World Renewable Energy Congress-Sweden, 8-13 May, 2011, Linköping, Sweden. Linköping University Electronic Press, 2011. |
59 | 袁伟玲, 曹凑贵, 李成芳, 等. 稻鸭、稻鱼共作生态系统CH4和N2O温室效应及经济效益评估[J]. 中国农业科学, 2009, 42(6): 2052-2060. |
YUAN Weiling, CAO Cougui, LI Chengfang, et al. Methane and nitrous oxide emissions from rice-fish and rice-duck complex ecosystems and the evaluation of their economic significance [J]. Scientia Agricultura Sinica, 2009, 42(6): 2052-2060. | |
60 | 展茗, 曹凑贵, 汪金平, 等. 复合稻田生态系统温室气体交换及其综合增温潜势[J]. 生态学报, 2008, 28(11): 5461-5468. |
ZHAN Ming, CAO Cougui, WANG Jinping, et al. Greenhouse gases exchange of integrated paddy field and their comprehensive global warming potentials [J]. Acta Ecologica Sinica, 2008, 28(11): 5461-5468. | |
61 | 徐祥玉, 张敏敏, 彭成林, 等. 稻虾共作对秸秆还田后稻田温室气体排放的影响[J]. 中国生态农业学报, 2017, 25(11): 1591-1603. |
XU Xiangyu, ZHANG Minmin, PENG Chenglin, et al. Effect of rice-crayfish co-culture on greenhouse gases emission in straw-puddled paddy fields [J]. Chinese Journal of Eco-Agriculture, 2017, 25(11): 1591-1603. | |
62 | INUBUSHI K, SUGII H, NISHINO S, et al. Effect of aquatic weeds on methane emission from submerged paddy soil [J]. American Journal of Botany, 2001, 88(6): 975-979. |
63 | DENIER VAN DER GON H A, VAN BODEGOM P M, WASSMANN R, et al. Sulfate-containing amendments to reduce methane emissions from rice fields: Mechanisms, effectiveness and costs [J]. Mitigation and Adaptation Strategies for Global Change, 2001, 6(1): 71-89. |
64 | WANG C, JIN Y G, JI C, et al. An additive effect of elevated atmospheric CO2 and rising temperature on methane emissions related to methanogenic community in rice paddies [J]. Agriculture, Ecosystems & Environment, 2018, 257: 165-174. |
65 | LIANG H, LI S, ZHANG L, et al. Long-term green manuring enhances crop N uptake and reduces N losses in rice production system [J]. Soil and Tillage Research, 2022, 220: 105369. |
66 | 颜志雷, 方宇, 陈济琛, 等. 连年翻压紫云英对稻田土壤养分和微生物学特性的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1151-1160. |
YAN Zhilei, FANG Yu, CHEN Jichen, et al. Effect of turning over Chinese milk vetch (Astragalus sinicus L.) on soil nutrients and microbial properties in paddy fields [J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1151-1160. | |
67 | 刘春增, 常单娜, 李本银, 等. 种植翻压紫云英配施化肥对稻田土壤活性有机碳氮的影响 [J]. 土壤学报, 2017, 54(3): 657-669. |
LIU Chunzeng, CHANG Danna, LI Benyin, et al. Effects of planting and incorporation of Chinese milk vetch coupled with application of chemical fertilizer on active organic carbon and nitrogen in paddy soil [J]. Acta Pedologica Sinica, 2017, 54(3): 657-669. | |
68 | 熊正琴, 邢光熹, 鹤田治雄, 等. 冬季耕作制度对农田氧化亚氮排放的贡献 [J]. 南京农业大学学报, 2002, 25(4): 49-52. |
XIONG Zhengqin, XING Guangxi, TSURUTA H, et al. Nitrous oxide emissions from agricultural soils as affected by winter cropping system [J]. Journal of Nanjing Agricultural University, 2002, 25(4): 49-52. | |
69 | 李启凤, 王宇欣, 韩梦宇. 世界垂直农业发展案例分析与展望[J]. 农业工程, 2013, 3(6): 64-67. |
LI Qifeng, WANG Yuxin, HAN Mengyu. Cases study and prospect analysis of vertical farming [J]. Agricultural Engineering, 2013, 3(6): 64-67. | |
70 | VYAWAHARE M. World's largest vertical farm grows without soil, sunlight or water in Newark [J]. The Guardian, 2016, 14. |
71 | TAWALBEH M, AL-OTHMAN A, KAFIAH F, et al. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook [J]. Science of the Total Environment, 2021, 759: 143528. |
72 | 何勇. 光伏农业产业发展探讨[J]. 现代农业科技, 2017(7): 185-186, 191. |
73 | 吴楠, 张耀邦, 佘炜, 等. 光伏发电+农业 解锁农业发展新模式[J]. 蔬菜, 2018(4): 1-7. |
74 | XUE J L. Photovoltaic agriculture-New opportunity for photovoltaic applications in China [J]. Renewable and Sustainable Energy Reviews, 2017, 73: 1-9. |
75 | LAL R. Carbon emission from farm operations. Environment international [J]. Environment International, 2004, 30(7): 981-990. |
76 | ZHU Z H, CHAI X Y, XU L Z, et al. Design and performance of a distributed electric drive system for a series hybrid electric combine harvester [J]. Biosystems Engineering, 2023, 236: 160-174. |
77 | GORJIAN S, EBADI H, TROMMSDORFF M, et al. The advent of modern solar-powered electric agricultural machinery: A solution for sustainable farm operations [J]. Journal of Cleaner Production, 2021, 292: 126030. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||