[1] Pan G, Smith P, Pan W. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China [J]. Agriculture Ecosystems and Environment, 2009, 129(1): 344-348.
[2] Pan G, Smith P, Pan W. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China [J]. Agriculture Ecosystems & Environment, 2009, 129(1): 344-348.
[3] Lal R. Soil carbon dynamics in cropland and rangeland [J]. Environmental Pollution, 2002, 116(3): 353-362.
[4] Krauss M, Ruser R, Müller T, et al. Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley-winter wheat cropping sequence [J]. Agriculture, Ecosystems & Environment, 2017, 239: 324-333.
[5] Long-term tillage effects on soil organic carbon and dissolved organic carbon in a purple paddy soil of Southwest China [J]. Acta Ecologica Sinica, 2013, 33(5): 260-265.
[6] Arai M, Miura T, Tsuzura H, et al. Two-year responses of earthworm abundance, soil aggregates, and soil carbon to no-tillage and fertilization[J]. Geoderma, 2017: S0016706116308126.
[7] Mehra P, Baker J, Sojka R E, et al. A review of tillage practices and their potential to impact the soil carbon dynamics [J]. Advances in Agronomy, 2018.
[8] Liang A Z, Zhang X P, Yang X M, et al. Short-term effects of tillage on soil organic carbon storage in the plow layer of black soil in northeast China [J]. Scientia Agricultura Sinica, 2006, 3(6): 1287-1293.
[9] Singh P, Heikkinen J, Ketoja E, et al. Tillage and crop residue management methods had minor effects on the stock and stabilization of topsoil carbon in a 30-year field experiment [J]. Science of The Total Environment, 2015, 518-519: 337-344.
[10] 王超, 涂志强, 郑铁志. 吉林省保护性耕作技术推广应用研究[J]. 中国农机化学报, 2019, 40(10): 200-203.
Wang Chao, Tu Zhiqiang, Zheng Tiezhi. Study on the promotion and application of conservation tillage technology in Jilin [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(10): 200-203.
[11] 张宁洁, 张佩, 林蜀云, 等. 丘陵山区秸秆还田试验效果分析及机具研究[J]. 中国农机化学报, 2019, 40(3): 185-189.
Zhang Ninghao, Zhang Pei, Lin Shuyun, et al. Experiment and research on selecting straw returning machine in hilly and mountainous area [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(3): 185-189.
[12] 邹璠, 周力. 农户机械化秸秆还田技术采纳行为的地区差异性分析——基于苏、鲁、黑三省农户调研数据[J]. 中国农机化学报, 2019, 40(2): 221-227.
Zou Pan, Zhou Li. Analysis of regional differences of farmers' straw returned combined machine technology adoption: Based on the survey data in Jiangsu, Shandong and Heilongjiang Province [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(2): 221-227.
[13] 姜伟, 张华, 李娜, 等. 山东省农作物秸秆利用与装备现状[J]. 中国农机化学报, 2019, 40(2): 169-174.
Jiang Wei, Zhang Hua, Li Na, et al. Status of crop straw utilization and equipments in Shandong Province [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(2): 169-174.
[14] Poeplau C, Kätterer T, Bolinder M A, et al. Low stabilization of aboveground crop residue carbon in sandy soils of Swedish long-term experiments [J]. Geoderma, 2015, 237: 246-255.
[15] Zhao H, Shar A G, Li S, et al. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system [J]. Soil and Tillage Research, 2018, 175: 178-186.
[16] Li Z, Lai X, Yang Q, et al. In search of long-term sustainable tillage and straw mulching practices for a maize-winter wheat-soybean rotation system in the Loess Plateau of China [J]. Field Crops Research, 2018, 217.
[17] Bernoux, Martial, Chevallier, et al. Wetting-drying cycles do not increase organic carbon and nitrogen mineralization in soils with straw amendment [J]. Geoderma: An International Journal of Soil Science, 2017, 304: 68-75.
[18] Cui S, Cao G, Zhu X. Effects of tillage on stocks and stratification of soil carbon and nitrogen in rice-wheat system [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 275-282.
[19] Zhang Hanlin, Zheng Xianqing, He Qiyong, et al. Effect of years of straw returning on soil aggregates and organic carbon in rice-wheat rotation systems [J]. Journal of Soil and Water Conservation, 2016.
[20] Gong Z T, Zhang G L, Chen Z C. Pedogenesis and soil taxonomy [M]. Beijing: Sci. Press, 2007.
[21] Grossman R B, Reinsch T G. 2. 1 Bulk density and linear extensibility [M]. Methods of Soil Analysis, 2002.
[22] Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils [J]. Soil Science Society of America Journal, 1986, 50(3): 627-627.
[23] Nelson D W, Sommers L E. Total carbon, organic carbon, and organic matter, in: Methods of soil analysis [M]. American Society of Agronomy, USA, 1996.
[24] Blair G, Lefroy R, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research, 1995, 46(7): 393-406.
[25] Ellert B H, Bettany J R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes [J]. Canadian Journal of Soil Science, 1995, 75(4): 529-538.
[26] Wei Y H, Zhao X, Zhai Y, et al. Effects of tillages on soil organic carbon sequestration in North China Plain [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 29(17): 87-95.
[27] Zhou H, Lu Y Z, Yang Z C, et al. Effects of conservation tillage on soil aggregates in Huabei Plain China [J]. Scientia Agricultura Sinica, 2007, 40(9): 1973-1979.
[28] 薛斌, 黄丽, 鲁剑巍, 等. 连续秸秆还田和免耕对土壤团聚体及有机碳的影响[J]. 水土保持学报, 2018, 32(1): 182-189.
Xue Bin, Huang Li, Lu Jianwei, et al. Effects of continuous straw returning and no-tillage on soil aggregates and organic carbon [J]. Journal of Soil and Water Conservation, 2018, 32(1): 182-189.
[29] Yousefi M, Hajabbasi M, Shariatmadari H. Cropping system effects on carbohydrate content and water-stable aggregates in a calcareous soil of Central Iran [J]. Soil and Tillage Research, 2008, 101(1-2): 57-61.
[30] Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils [J]. Journal of Soil Science, 1982.
[31] 陈晓芬, 李忠佩, 刘明, 等. 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响[J]. 中国农业科学, 2013, 46(5): 950-960.
Chen Xiaofang, Li Zhongpei, Liu Ming, et al. Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical China [J]. Scientia Agricultura Sinica, 2013, 46(5): 950-960.
[32] Du Zhangliu, Ren Tusheng, Hu Chunsheng, et al. Soil aggregate stability and aggregate-associated carbon under different tillage systems in the North China plain [J]. 农业科学学报(英文版), 2013(11): 2114-2123.
[33] Andruschkewitsch R, Koch H J, Ludwig B. Effect of long-term tillage treatments on the temporal dynamics of water-stable aggregates and on macro-aggregate turnover at three German sites [J]. Geoderma, 2014, 217-218: 57-64.
[34] Ussiri D A N, Lal R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio [J]. Soil & Tillage Research, 2009, 104(1): 39-47.
[35] Mikha M M, Rice C W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen [J]. Soil Science Society of America Journal, 2004, 68(3): 809-816.
[36] Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture [J]. Soil Biology & Biochemistry, 2000, 32(14): 2099-2103.
[37] Arun, Jyoti, Nath, et al. Effects of tillage practices and land use management on soil aggregates and soil organic carbon in the North Appalachian Region, USA [J]. Pedosphere, 2017.
[38] Xu S Q, Zhang M Y, Zhang H L, et al. Soil organic carbon stocks as affected by tillage systems in a double-cropped rice field [J]. Pedosphere, 2013, 23(5): 696-704.
[39] Ghosh B N, Meena V S, Singh R J, et al. Effects of fertilization on soil aggregation, carbon distribution and carbon management index of maize-wheat rotation in the north-western Indian Himalayas [J]. Ecological Indicators, 2018: 415-424.
[40] Zhu L Q, Hu N J, Zhang Z W, et al. Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice-wheat cropping system [J]. Catena, 2015, 135: 283-289.
[41] 黄国勤. 长江经济带稻田耕作制度绿色发展探讨[J]. 中国生态农业学报(中英文), 2020, 28(1): 1-7.
Huang Guoqin. Green development of paddy field farming systems in the Yangtze River Economic Belt [J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 1-7.
[42] 王移, 曹龙熹, 樊剑波, 等. 红壤坡地耕作措施对土壤入渗过程的影响机制[J]. 四川师范大学学报(自然科学版), 2020, 43(1): 108-114.
Wang Yi, Cao Longxi, Fan Jianbo, et al. The mechanism of tillage practices in affecting infiltration on slope farmland of the red soil region [J]. Journal of Sichuan Normal University(Natural Science), 2020, 43(1): 108-114.
[43] 焦帅, 王玮瑜, 赵兴敏, 等. 耕作方式对黑钙土主要肥力特征及玉米产量的影响[J]. 干旱地区农业研究, 2020, 38(1): 31-38.
Jiao Shuai, Wang Weiyu, Zhao Xingmin, et al. Effects of tillage methods on major fertility characteristics of chernozem soil and maize yield [J]. Agricultural Research In The Arid Areas, 2020, 38(1): 31-38.
[44] 张志毅, 熊桂云, 吴茂前, 等. 有机培肥与耕作方式对稻麦轮作土壤团聚体和有机碳组分的影响[J]. 中国生态农业学报(中英文), 2020, 28(3): 405-412.
Zhang Zhiyi, Xiong Guiyun, Wu Maoqian, et al. Effects of organic fertilization and tillage method on soil aggregates and organic carbon fractions in a wheat-rice system Chinese Journal of Eco-Agriculture, 2020, 28(3): 405-412.
[45] 应婧, 易文裕, 熊昌国, 等. 四川省农作物秸秆能源化利用模式探讨[J]. 中国农机化学报, 2019, 40(2): 163-168.
Ying Jing, Yi Wenyu, Xiong Changguo, et al. Discussion on energy utilization mode of crop straw in Sichuan Province [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(2): 163-168.
[46] 杜映妮, 李天阳, 何丙辉, 等. 长期施肥和耕作下紫色土坡耕地土壤C、N、P和K化学计量特征[J]. 环境科学, 2020, 41(1): 394-402.
Du Yingni, Li Tianyang, He Binghui, et al. Stoichiometric characteristics of purple sloping cropland under long-term fertilization and cultivation [J]. Environmental Science, 2020, 41(1): 394-402.
[47] 李锡锋, 许丽, 张守福, 等. 砂姜黑土麦玉农田土壤团聚体分布及碳氮含量对不同耕作方式的响应[J]. 山东农业科学, 2020, 52(3): 52-59.
Li Xifeng, Xu Li, Zhang Shoufu, et al. Responses of aggregate distribution and carbon and nitrogen contents in lime concretion black soil under wheat-corn double cropping system to different tillage modes [J]. Shandong Agricultural Sciences, 2020, 52(3): 52-59.
[48] 祁泽伟, 刘彩霞, 李娜娜, 等. 耕作方式对晋中玉米田土壤有机碳储量的影响[J]. 山西农业科学, 2020, 48(2): 233-237.
Qi Zewei, Liu Caixia, Li Nana, et al. Effects of different tillage methods on soil organic carbon stock in maize fields in Jinzhong [J]. Journal of Shanxi Agricultural Sciences, 2020, 48(2): 233-237.
[49] 杨雪涛, 曹建民, 丁晓东. 农户禀赋、经营规模对秸秆资源化利用的影响——基于吉林省公主岭市的微观数据[J]. 中国农机化学报, 2020, 41(4): 175-180, 236.
Yang Xuetao, Cao Jianmin, Ding Xiaodong. Effects of farmers' endowment and operation scale on straw utilization based on the microscopic data of Gongzhuling city in Jilin Province [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(4): 175-180, 236.
[50] 陈玉华, 田富洋, 闫银发, 等. 农作物秸秆综合利用的现状、存在问题及发展建议[J]. 中国农机化学报, 2018, 39(2): 67-73.
Chen Yuhua, Tian Fuyang, Yan Yinfa, et al. Current status, existing problems and development suggestions for comprehensive utilization of crop straw [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(2): 67-73.
[51] 李浩, 沈卫强, 班婷. 我国秸秆利用技术及秸秆粉碎设备的研究进展[J]. 中国农机化学报, 2018, 39(1): 17-21.
Li Hao, Shen Weiqiang, Ban Ting. Research progress of the use of technology and crushing equipment on straw in China [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(1): 17-21.
[52] 于秀丽. 内陆盐碱湿地土壤pH对土壤有机碳含量的影响[J]. 中国农机化学报, 2019, 40(11): 203-208.
Yu Xiuli. Effects of pH on the concentration of organic carbon in soils of inland saline-alkali wetland [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(11): 203-208.
[53] 丁宝根, 赵玉, 罗志红. 长江经济带农业碳排放的EKC检验及影响因素研究[J]. 中国农机化学报, 2019, 40(9): 223-228.
Ding Baogen, Zhao Yu, Luo Zhihong. EKC test of agricultural carbon emissions in the Yangtze River Economic Zone and analysis of the affecting factors [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(9): 223-228.
[54] 许清涛, 李玉波, 杨淑杰. 吉林省农业现代化进程中碳排放测算与分解[J]. 中国农机化学报, 2018, 39(7): 103-109.
Xu Qingtao, Li Yubo, Yang Shujie. Measurement and decomposition of carbon emission by the process of agricultural modernization in Jilin Province [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(7): 103-109. |