Journal of Intelligent Agricultural Mechanization ›› 2023, Vol. 4 ›› Issue (4): 41-48.DOI: 10.12398/j.issn.2096-7217.2023.04.006
Previous Articles Next Articles
GUO Wenjuan1,2(), FENG Quan2
Received:
2023-08-20
Revised:
2023-11-08
Online:
2023-11-15
Published:
2023-11-15
Corresponding author:
GUO Wenjuan.E-mail:565105996@qq.com
About author:
GUO Wenjuan.E-mail:565105996@qq.com
CLC Number:
GUO Wenjuan, FENG Quan. Development status and trends of interpretability methods based on class activation mapping in crop detection and recognition[J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(4): 41-48.
Add to citation manager EndNote|Ris|BibTeX
URL: http://znhnyzbxb.niam.com.cn/EN/10.12398/j.issn.2096-7217.2023.04.006
1 | 宋怀波, 何东健. 面向精细农业的高维数据本征维数估计方法研究进展[J]. 中国科学: 信息科学, 2010, 40(S1): 104-110. |
SONG Huaibo, HE Dongjian. Research progress on intrinsic dimension estimation of precision agriculture-oriented high dimensional dataset [J]. Scientia Sinica(Informationis), 2010, 40(S1): 104-110. | |
2 | 孟建军. 现代农业新概念[M]. 北京: 中国农业出版社, 2010. |
3 | 吕盛坪, 李灯辉, 冼荣亨. 深度学习在我国农业中的应用研究现状[J]. 计算机工程与应用, 2019, 55(20): 24-33. |
Shengping LÜ, LI Denghui, XIAN Rongheng. Research status of deep learning in agriculture of China [J]. Computer Engineering and Applications, 2019, 55(20): 24-33. | |
4 | 翁杨, 曾睿, 吴陈铭, 等. 基于深度学习的农业植物表型研究综述[J]. 中国科学: 生命科学, 2019, 49(6): 698-716. |
WENG Yang, ZENG Rui, WU Chenming, et al. A survey on deep-learning-based plant phenotype research in agriculture [J]. Scientia Sinica(Vitae), 2019, 49(6): 698-716. | |
5 | 傅隆生, 宋珍珍, 张鑫, 等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报, 2020, 25(2): 105-120. |
FU Longsheng, SONG Zhenzhen, ZHANG Xin, et al. Applications and research progress of deep learning in agriculture [J]. Journal of China Agricultural University, 2020, 25(2): 105-120. | |
6 | KAMILARIS A, PRENAFETA-BOLDÚ F X. Deep learning in agriculture: A survey [J]. Computers and electronics in agriculture, 2018, 147: 70-90. |
7 | 化盈盈, 张岱墀, 葛仕明. 深度学习模型可解释性的研究进展[J]. 信息安全学报, 2020, 5(3): 1-12. |
HUA Yingying, ZHANG Daichi, GE Shiming. Research progress in the interpretability of deep learning models [J]. Journal of Cyber Security, 2020, 5(3): 1-12. | |
8 | 曾春艳, 严康, 王志锋, 等. 深度学习模型可解释性研究综述[J]. 计算机工程与应用, 2021, 57(8): 1-9. |
ZENG Chunyan, YAN Kang, WANG Zhifeng, et al. Survey of interpretability research on deep learning models [J]. Computer Engineering and Applications, 2021, 57(8): 1-9. | |
9 | MONTAVON G, SAMEK W, MÜLLER K R. Methods for interpreting and understanding deep neural networks [J]. Digital signal processing, 2018, 73: 1-15. |
10 | 司念文, 张文林, 屈丹, 等. 卷积神经网络表征可视化研究综述[J]. 自动化学报, 2022, 48(8): 1890-1920. |
SI Nianwen, ZHANG Wenlin, QU Dan, et al. Representation visualization of convolutional neural networks: A Survey [J]. Acta Automatica Sinica, 2022, 48(8): 1890-1920. | |
11 | 杨朋波, 桑基韬, 张彪, 等. 面向图像分类的深度模型可解释性研究综述[J]. 软件学报, 2023, 34(1): 230-254. |
YANG Pengbo, SANG Jitao, ZHANG Biao, et al. Survey on interpretability of deep models for image classification [J]. Journal of Software, 2023, 34(1): 230-254 . | |
12 | 窦慧, 张凌茗, 韩峰, 等. 卷积神经网络的可解释性研究综述 [J/OL]. 软件学报, 1-27[2023-11-05]. |
DOU Hui, ZHANG Lingming, HAN Fdeng, et al. Survey on convolutional neural network interpretability [J/OL]. Journal of Software, 1-27[2023-11-05]. | |
13 | ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization [C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 2921-2929. |
14 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization [C]// Proceedings of the IEEE international conference on computer vision. 2017: 618-626. |
15 | CHATTOPADHAY A, SARKAR A, HOWLADER P, et al. Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks [C]//2018 IEEE winter conference on applications of computer vision (WACV). IEEE, 2018: 839-847. |
16 | 邵明月, 张建华, 冯全, 等. 深度学习在植物叶部病害检测与识别的研究进展[J]. 智慧农业(中英文), 2022, 4(1): 29-46. |
SHAO Mingyue, ZHANG Jianhua, FENG Quan, et al. Research progress of deep learning in detection and recognition of plant leaf diseases [J]. Smart Agriculture, 2022, 4(1): 29-46. | |
17 | 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7):1-18. |
ZHAI Zhaoyu, CAO Yifei, XU Huanliang, et al. Review of key techniques for crop disease and pest detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 1-18. | |
18 | 郭文娟, 冯全, 李相周. 基于农作物病害检测与识别的卷积神经网络模型研究进展[J]. 中国农机化学报, 2022, 43(10): 157-166. |
GUO Wenjuan, FENG Quan, LI Xiangzhou. Research progress of convolutional neural network model based on crop disease detection and recognition [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 157-166. | |
19 | 王美华, 吴振鑫, 周祖光. 基于注意力改进CBAM的农作物病虫害细粒度识别研究[J]. 农业机械学报, 2021, 52(4): 239-247. |
WANG Meihua, WU Zhenxin, ZHOU Zuguang. Fine-grained identification research of crop pests and diseases based on improved CBAM via attention [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 239-247. | |
20 | 王泽钧, 马凤英, 张瑜, 等. 基于注意力机制和多尺度轻量型网络的农作物病害识别[J]. 农业工程学报, 2022, 38(S1): 176-183. |
WANG Zejun, MA Fengying, ZHANG Yu, et al. Crop disease recognition using attention mechanism and multi-scale lightweight network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(S1): 176-183. | |
21 | 李大湘, 曾小通, 刘颖. 耦合全局与局部特征的苹果叶部病害识别模型[J]. 农业工程学报, 2022, 38(16): 207-214. |
LI Daxiang, ZENG Xiaotong, LIU Ying. Apple leaf disease identification model by coupling global and patch features [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(16): 207-214. | |
22 | 于明, 李若曦, 阎刚, 等. 基于颜色掩膜网络和自注意力机制的叶片病害识别方法[J]. 农业机械学报, 2022, 53(8): 337-344. |
YU Ming, LI Ruoxi, YAN Gang, et al. Crop diseases recognition method via fusion color mask and self-attention mechanism [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 337-344. | |
23 | 贾璐, 叶中华. 基于注意力机制和特征融合的葡萄病害识别模型[J]. 农业机械学报, 2023, 54(7): 223-233. |
JIA Lu, YE Zhonghua. Grape disease recognition model based on attention mechanism and feature fusion [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 223-233. | |
24 | 李康顺, 杨振盛, 江梓锋, 等. 基于改进YOLOX-Nano的农作物叶片病害检测与识别方法[J]. 华南农业大学学报, 2023, 44(4): 593-603. |
LI Kangshun, YANG Zhensheng, JIANG Zifeng, et al. Detection and identification of crop leaf diseases based on improved YOLOX-Nano [J]. Journal of South China Agricultural University, 2023, 44(4): 593-603. | |
25 | 刘德营, 王家亮, 林相泽, 等 . 基于卷积神经网络的白背飞虱识别方法[J]. 农业机械学报, 2018, 49(5): 51-56. |
LIU Deying, WANG Jialiang, LIN Xiangze,et al. Automatic identification method for Sogatella furcifera based on convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 51-56. | |
26 | 杨国国, 鲍一丹, 刘子毅 . 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J]. 农业工程学报, 2017, 33(6): 156-162. |
YANG Guoguo, BAO Yidan, LIU Ziyi. Localization and recognition of pests in tea plantation based on image saliency analysis and convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering,2017, 33(6): 156-162. | |
27 | 鲍文霞, 吴德钊, 胡根生, 等. 基于轻量型残差网络的自然场景水稻害虫识别[J]. 农业工程学报, 2021, 37(16): 145-152. |
BAO Wenxia, WU Dezhao, HU Gensheng, et al. Rice pest identification in natural scene based on lightweight residual network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 145-152. | |
28 | 甘雨, 郭庆文, 王春桃, 等. 基于改进 EfficientNet 模型的作物害虫识别[J]. 农业工程学报, 2022, 38(1): 203-211. |
GAN Yu, GUO Qingwen, WANG Chuntao, et al. Recognizing crop pests using an improved EfficientNet model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 203-211. | |
29 | 彭红星, 何慧君, 高宗梅, 等. 基于改进 ShuffleNetV2 模型的荔枝病虫害识别方法[J]. 农业机械学报, 2022, 53(12): 290-300. |
PENG Hongxing, HE Huijun, GAO Zongmei, et al. Litchi diseases and insect pests identification method based on improved ShuffleNetV2 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(12): 290-300. | |
30 | 田有文, 吴伟, 林磊, 等. 基于深度学习与高光谱成像的蓝莓果蝇虫害无损检测[J]. 农业机械学报, 2023, 54(1): 393-401. |
TIAN Youwen, WU Wei, LIN Lei, et al. Nondestructive detection of blueberry fruit fly pests based on deep learning and hyperspectral imaging [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(1): 393-401. | |
31 | 苏宝峰, 沈磊, 陈山, 等. 基于注意力机制的葡萄品种多特征分类方法[J]. 农业机械学报, 2021, 52(11): 226-233, 252. |
SU Baofeng, SHEN Lei, CHEN Shan, et al. Multi features identification of grape cultivars based on attention mechanism [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(11): 226-233, 252. | |
32 | 孟莉莎, 杨贤昭, 刘惠康. 基于CA-EfficientNetV2的蘑菇图像分类算法研究[J]. 激光与光电子学进展, 2022, 59(24): 56-63. |
MENG Lisha, YANG Xianzhao, LIU Huikang. Algorithm on mushroom image classification based on CA-EfficientNetV2 [J]. Progress in laser and optoelectronics, 2022, 59(24): 56-63. | |
33 | 赵立新, 白银光, 何春燕, 等 . 基于双维度注意力机制的西红柿成熟度检测方法[J]. 科学技术与工程, 2023, 23(11): 4571-4578. |
ZHAO Lixin, BAI Yinguang, HE Chunyan, et al. Tomato maturity detection based on two-dimensional attention mechanism [J]. Science Technology and Engineering, 2023, 23(11): 4571-4578. | |
34 | 唐恒翱, 李杭昊, 孙志同, 等. 基于统计纹理残差学习网络的葡萄叶片分类方法[J]. 华中农业大学学报, 2023, 42(3): 169-176. |
TANG Heng’ao, LI Hanghao, SUN Zhitong, et al. Fine-grained classification of grape leaves based on statistical texture residual learning network[J]. Journal of Huazhong Agricultural University, 2023, 42(3):169-176. | |
35 | 朱学岩, 陈锋军, 郑一力, 等. 融合双线性网络和注意力机制的油橄榄品种识别[J]. 农业工程学报, 2023, 39(10): 183-192. |
ZHU Xueyan, CHEN Fengjun, ZHENG Yili, et al. Identification of olive cultivars using bilinear networks and attention mechanisms [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(10): 183-192. | |
36 | 龙燕, 杨智优, 何梦菲. 基于改进YOLOv7的疏果期苹果目标检测方法[J]. 农业工程学报, 2023, 39(14): 191-199. |
LONG Yan, YANG Zhiyou, HE Mengfei. Recognizing apple targets before thinning using improved YOLOv7 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(14): 191-199. | |
37 | 王昱, 姚兴智, 李斌, 等. 基于改进YOLOv7-tiny的甜椒畸形果识别算法[J/OL]. 农业机械学报, 1-16[2023-11-05]. |
WANG Yu, YAO Xingzhi, LI Bin, et al. Malformed sweet pepper fruit identification algorithm based on Improved YOLOv7-tiny [J]. Transactions of the Chinese Society for Agricultural Machinery, 1-16[2023-11-05]. | |
38 | 张宏鸣, 付振宇, 韩文霆, 等. 基于改进YOLO的玉米幼苗株数获取方法[J]. 农业机械学报, 2021, 52(4): 221-229. |
ZHANG Hongming, FU Zhenyu, HAN Wenting, et al. Detection method of maize seedlings number based on improved YOLO [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 221-229. | |
39 | 张日红, 区建爽, 李小敏. 基于改进YOLOv4的轻量化菠萝苗心检测算法[J]. 农业工程学报, 2023, 39(4): 135-143. |
ZHANG Rihong, QU Jianshuang, LI Xiaomin. Lightweight algorithm for pineapple plant center detection based on improved an YOLOv4 model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(4): 135-143. | |
40 | 张万枝, 曾祥, 刘树峰, 等. 基于改进YOLO v5s的马铃薯种薯芽眼检测方法[J].农业机械学报, 2023, 54(9):260-269. |
ZHANG Wanzhi, ZENG Xiang, LIU Shufeng, et al. Detection method of potato seed bud eye based on improved YOLO v5s [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(9): 260-269. | |
41 | 赵辉, 曹宇航, 岳有军, 等. 基于改进DenseNet的田间杂草识别[J]. 农业工程学报, 2021, 37(18): 136-142. |
ZHAO Hui, CAO Yuhang, YUE Youjun, et al. Field weed recognition based on improved DenseNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 136-142. | |
42 | 杨森森, 张昊, 兴陆, 等. 改进 MobileViT 网络识别轻量化田间杂草[J]. 农业工程学报, 2023, 39(9): 152-160. |
YANG Sensen, ZHANG Hao, XING Lu, et al. Light weight recognition of weeds in the field based on improved MobileViT network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(9): 152-160. | |
43 | 饶秀勤, 朱逸航, 张延宁, 等. 基于语义分割的作物垄间导航路径识别[J]. 农业工程学报, 2021, 37(20):179-186. |
RAO Xiuqin, ZHU Yihang, ZHANG Yanning, et al. Navigation path recognition between crop ridges based on semantic segmentation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 179-186. | |
44 | 陈红, 张兆国, 解开婷, 等. 基于Deeplab-MV3的三七垄间导航线提取算法研究[J]. 昆明理工大学学报(自然科学版), 2023, 48(5): 95-106. |
CHEN Hong, ZHANG Zhaoguo, XIE Kaiting, et al. Navigation line extraction algorithm of panax notoginseng filed ridges based on Deeplab-MV3 [J]. Journal of Kunming University of Science and Technology (Natural Science), 2023, 48(5): 95-106. | |
45 | 宋余庆, 杨东川, 徐立, 等. 基于DBSE-Net的大田稻穗图像分割[J]. 农业工程学报, 2022, 38(13): 202-209. |
SONG Yuqing, YANG Dongchuan, XU Lizhang, et al. Segmenting field rice panicle images using DBSE-Net [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(13): 202-209. | |
46 | 朱德利, 余茂生, 梁明飞. 基于 SwinT-YOLACT 的玉米果穗实时实例分割[J]. 农业工程学报, 2023, 39(14): 164-172. |
ZHU Deli, YU Maosheng, LIANG Mingfei. Real-time instance segmentation of maize ears using SwinT-YOLACT [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(14): 164-172. |
[1] | Hongjun Wang, Xiaoyu Ji, Hui Zhao, Youjun Yue. SENet optimized Deeplabv3+ freshwater fish body semantic segmentation* [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2021, 2(1): 36-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||