Journal of Intelligent Agricultural Mechanization ›› 2024, Vol. 5 ›› Issue (1): 12-22.DOI: 10.12398/j.issn.2096-7217.2024.01.002
Previous Articles Next Articles
YAN Quantao1,2,3,4(), LI Lixia2, QIU Quan1(), CONG Yue3
Received:
2023-10-20
Revised:
2024-01-04
Online:
2024-02-15
Published:
2024-02-07
Corresponding author:
QIU Quan
CLC Number:
YAN Quantao, LI Lixia, QIU Quan, CONG Yue. Development and test of a small robotic system for in-field undisturbed soil sampling[J]. Journal of Intelligent Agricultural Mechanization, 2024, 5(1): 12-22.
Add to citation manager EndNote|Ris|BibTeX
URL: http://znhnyzbxb.niam.com.cn/EN/10.12398/j.issn.2096-7217.2024.01.002
入土方式 | 优点 | 缺点 |
---|---|---|
直压式 | 操作简单,不易造成土体压实变形,利于原状土柱的获取及保持 | 不利于克服土体阻力 |
重力锤击式 | 可有效克服土体阻力,能够使用在土质较硬的场合 | 取土过程中取土器震动较大、运动无规律,易造成土体结构破坏,不利于原状土的获取 |
直压旋入式 | 原状土样的质量较高,管靴刃口的旋转切割作用能够有效降低入土阻力 | 操作方式相对复杂 |
Table 1 Comparison of different soil sampler insertion mode
入土方式 | 优点 | 缺点 |
---|---|---|
直压式 | 操作简单,不易造成土体压实变形,利于原状土柱的获取及保持 | 不利于克服土体阻力 |
重力锤击式 | 可有效克服土体阻力,能够使用在土质较硬的场合 | 取土过程中取土器震动较大、运动无规律,易造成土体结构破坏,不利于原状土的获取 |
直压旋入式 | 原状土样的质量较高,管靴刃口的旋转切割作用能够有效降低入土阻力 | 操作方式相对复杂 |
技术参数名称 | 技术参数数值 |
---|---|
外观尺寸/(mm×mm×mm) | 340×160×1 100 |
液压电机功率/kW | 1.2 |
减速机构减速比 | 1:3 |
升降油缸行程/mm | 250 |
取土深度/mm | 0~200 |
所取土样直径/mm | 61.8 |
整机质量/kg | 50 |
Table 2 Key parameters of the layered undisturbed soil sampling device
技术参数名称 | 技术参数数值 |
---|---|
外观尺寸/(mm×mm×mm) | 340×160×1 100 |
液压电机功率/kW | 1.2 |
减速机构减速比 | 1:3 |
升降油缸行程/mm | 250 |
取土深度/mm | 0~200 |
所取土样直径/mm | 61.8 |
整机质量/kg | 50 |
取样层数 (对应取样深度) | 平均抗剪强度/kPa | |||||||
---|---|---|---|---|---|---|---|---|
100 kPa加载 | 200 kPa加载 | 300 kPa加载 | 400 kPa加载 | |||||
环刀法 | 新系统 | 环刀法 | 新系统 | 环刀法 | 新系统 | 环刀法 | 新系统 | |
一(0~2 cm) | 73.6 | 75.2 | 121.2 | 125.9 | 185.4 | 171.4 | 224.6 | 227.5 |
二(2~4 cm) | 69.0 | 72.1 | 111.9 | 119.4 | 163.6 | 167.8 | 205.7 | 209.8 |
三(4~6 cm) | 66.0 | 78.2 | 101.2 | 119.7 | 155.3 | 187.0 | 197.8 | 230.6 |
四(6~8 cm) | 75.9 | 76.0 | 129.0 | 116.3 | 190.1 | 182.3 | 232.1 | 227.5 |
五(8~10 cm) | 79.8 | 81.3 | 130.5 | 130.5 | 191.6 | 190.1 | 245.7 | 231.2 |
六(10~12 cm) | 76.7 | 78.2 | 123.7 | 125.7 | 194.8 | 186.4 | 215.0 | 206.6 |
七(12~14 cm) | 75.3 | 92.6 | 136.8 | 121.2 | 189.2 | 187.0 | 208.7 | 224.4 |
八(14~16 cm) | 101.2 | 87.0 | 135.2 | 135.4 | 163.6 | 183.8 | 247.7 | 233.7 |
九(16~18 cm) | 98.3 | 91.5 | 132.1 | 139.9 | 187.1 | 183.5 | 239.8 | 239.9 |
十(18~20 cm) | 89.0 | 92.0 | 139.0 | 132.1 | 177.6 | 179.2 | 225.9 | 231.7 |
Table 3 The average shear strength of soil samples at different depths under different loads
取样层数 (对应取样深度) | 平均抗剪强度/kPa | |||||||
---|---|---|---|---|---|---|---|---|
100 kPa加载 | 200 kPa加载 | 300 kPa加载 | 400 kPa加载 | |||||
环刀法 | 新系统 | 环刀法 | 新系统 | 环刀法 | 新系统 | 环刀法 | 新系统 | |
一(0~2 cm) | 73.6 | 75.2 | 121.2 | 125.9 | 185.4 | 171.4 | 224.6 | 227.5 |
二(2~4 cm) | 69.0 | 72.1 | 111.9 | 119.4 | 163.6 | 167.8 | 205.7 | 209.8 |
三(4~6 cm) | 66.0 | 78.2 | 101.2 | 119.7 | 155.3 | 187.0 | 197.8 | 230.6 |
四(6~8 cm) | 75.9 | 76.0 | 129.0 | 116.3 | 190.1 | 182.3 | 232.1 | 227.5 |
五(8~10 cm) | 79.8 | 81.3 | 130.5 | 130.5 | 191.6 | 190.1 | 245.7 | 231.2 |
六(10~12 cm) | 76.7 | 78.2 | 123.7 | 125.7 | 194.8 | 186.4 | 215.0 | 206.6 |
七(12~14 cm) | 75.3 | 92.6 | 136.8 | 121.2 | 189.2 | 187.0 | 208.7 | 224.4 |
八(14~16 cm) | 101.2 | 87.0 | 135.2 | 135.4 | 163.6 | 183.8 | 247.7 | 233.7 |
九(16~18 cm) | 98.3 | 91.5 | 132.1 | 139.9 | 187.1 | 183.5 | 239.8 | 239.9 |
十(18~20 cm) | 89.0 | 92.0 | 139.0 | 132.1 | 177.6 | 179.2 | 225.9 | 231.7 |
取样层数(取样深度) | 环刀法 | 新系统 | ||
---|---|---|---|---|
拟合方程 | 拟合精度 | 拟合方程 | 拟合精度 | |
一(0~2 cm) | τ=σtan27.34°+21.90 | 0.98 | τ=σtan26.67°+24.40 | 0.99 |
二(2~4 cm) | τ=σtan24.75°+22.10 | 0.99 | τ=σtan24.77°+26.90 | 0.99 |
三(4~6 cm) | τ=σtan24.18°+17.10 | 0.99 | τ=σtan27.68°+22.75 | 0.98 |
四(6~8 cm) | τ=σtan27.91°+24.50 | 0.99 | τ=σtan27.50°+20.40 | 0.98 |
五(8~10 cm) | τ=σtan29.16°+22.20 | 0.99 | τ=σtan26.98°+30.95 | 0.97 |
六(10~12 cm) | τ=σtan25.92°+31.50 | 0.94 | τ=σtan24.03°+37.75 | 0.95 |
七(12~14 cm) | τ=σtan24.37°+39.35 | 0.93 | τ=σtan24.76°+41.00 | 0.96 |
八(14~16 cm) | τ=σtan25.03°+44.95 | 0.90 | τ=σtan26.04°+37.85 | 0.99 |
九(16~18 cm) | τ=σtan25.73°+44.45 | 0.98 | τ=σtan23.93°+41.50 | 0.99 |
十(18~20 cm) | τ=σtan24.18°+45.55 | 0.99 | τ=σtan24.99°+42.40 | 0.99 |
Table 4 Fitting functions and accuracies of the shear properties of soil samples collected with two sampling methods
取样层数(取样深度) | 环刀法 | 新系统 | ||
---|---|---|---|---|
拟合方程 | 拟合精度 | 拟合方程 | 拟合精度 | |
一(0~2 cm) | τ=σtan27.34°+21.90 | 0.98 | τ=σtan26.67°+24.40 | 0.99 |
二(2~4 cm) | τ=σtan24.75°+22.10 | 0.99 | τ=σtan24.77°+26.90 | 0.99 |
三(4~6 cm) | τ=σtan24.18°+17.10 | 0.99 | τ=σtan27.68°+22.75 | 0.98 |
四(6~8 cm) | τ=σtan27.91°+24.50 | 0.99 | τ=σtan27.50°+20.40 | 0.98 |
五(8~10 cm) | τ=σtan29.16°+22.20 | 0.99 | τ=σtan26.98°+30.95 | 0.97 |
六(10~12 cm) | τ=σtan25.92°+31.50 | 0.94 | τ=σtan24.03°+37.75 | 0.95 |
七(12~14 cm) | τ=σtan24.37°+39.35 | 0.93 | τ=σtan24.76°+41.00 | 0.96 |
八(14~16 cm) | τ=σtan25.03°+44.95 | 0.90 | τ=σtan26.04°+37.85 | 0.99 |
九(16~18 cm) | τ=σtan25.73°+44.45 | 0.98 | τ=σtan23.93°+41.50 | 0.99 |
十(18~20 cm) | τ=σtan24.18°+45.55 | 0.99 | τ=σtan24.99°+42.40 | 0.99 |
方差来源 | 平方和SS | 自由度df | 均方MS | F | P-value | Fcrit |
---|---|---|---|---|---|---|
组间 | 0.073 | 1 | 0.073 | 0.029 | 0.866 | 4.413 |
组内 | 45.091 | 18 | 2.505 | |||
总和 | 45.164 | 19 |
Table 5 Variance analysis for the internal friction angle of soil samples collected with two sampling methods
方差来源 | 平方和SS | 自由度df | 均方MS | F | P-value | Fcrit |
---|---|---|---|---|---|---|
组间 | 0.073 | 1 | 0.073 | 0.029 | 0.866 | 4.413 |
组内 | 45.091 | 18 | 2.505 | |||
总和 | 45.164 | 19 |
方差来源 | 平方和SS | 自由度df | 均方MS | F | P-value | Fcrit |
---|---|---|---|---|---|---|
组间 | 30.976 | 1 | 30.976 | 2.611 | 0.145 | 5.317 |
组内 | 94.915 | 18 | 11.864 | |||
总和 | 125.891 | 19 |
Table 6 Variance analysis for the cohesion of soil samples at depth 0-100 mm collected with two sampling methods
方差来源 | 平方和SS | 自由度df | 均方MS | F | P-value | Fcrit |
---|---|---|---|---|---|---|
组间 | 30.976 | 1 | 30.976 | 2.611 | 0.145 | 5.317 |
组内 | 94.915 | 18 | 11.864 | |||
总和 | 125.891 | 19 |
方差来源 | 平方和SS | 自由度df | 均方MS | F | P-value | Fcrit |
---|---|---|---|---|---|---|
组间 | 2.809 | 1 | 2.809 | 0.141 | 0.717 | 5.317 |
组内 | 159.697 | 18 | 19.962 | |||
总和 | 162.506 | 19 |
Table 7 Variance analysis for the cohesion of soil samples at depth 100-200 mm collected with two sampling methods
方差来源 | 平方和SS | 自由度df | 均方MS | F | P-value | Fcrit |
---|---|---|---|---|---|---|
组间 | 2.809 | 1 | 2.809 | 0.141 | 0.717 | 5.317 |
组内 | 159.697 | 18 | 19.962 | |||
总和 | 162.506 | 19 |
1 | 付晓莉, 邵明安, 吕殿青. 土壤持水特征测定中质量含水量、吸力和容重三者间定量关系Ⅱ.原状土壤[J]. 土壤学报, 2008, 45(1): 50-55. |
FU Xiaoli, SHAO Ming'an, Dianqing LÜ. Quantitative relationship between mass water content, pressure head and bulk density in determination of soil water retention characteristics II. undisturbed soils [J]. Acta Pedologica Sinica, 2008, 45(1): 50-55. | |
2 | 杨建立. 农业用机动取土器的研制与失效分析[D]. 郑州: 河南农业大学, 2013. |
YANG Jianli. Development and failure analysis on motorized soil for agriculture [D]. Zhengzhou: Henan Agricultural University, 2013. | |
3 | 陈亮之, 张军. 田间取土器的研究进展[J]. 机械研究与应用, 2016, 29(3): 212-213, 216. |
CHEN Liangzhi, ZHANG Jun. Research progress of the soil sampler [J]. Mechanical Research & Application, 2016, 29(3): 212-213, 216. | |
4 | HELLBUSCH J A. Under frame mounted soil sampler for light trucks [P]. US: US5076372,1991-12-31. |
5 | ABU-HAMDEH N H, AL-JALIL H F. Hydraulically powered soil core sampler and its application to soil density and porosity estimation [J]. Soil & Tillage Research, 1999, 52(12): 113-120. |
6 | HUBERS E. Vehicle mounted soil sampler [P]. US: US6363803, 2002-04-02. |
7 | 王健, 蔡焕杰, 陈新明, 等. 支架旋转式原状土取样器[P]. 中国: CN1609583, 2005-04-27. |
8 | 何云峰, 吴靖霆, 陈杰, 等. 一种齿轮式土壤采样器及其采样方法[P]. 中国: CN104330280A, 2015-02-04. |
9 | 周雪青, 李洪文, 何进, 等. 土壤容重测定用分段式原状取土器的设计[J]. 农业工程学报, 2008, 24(8): 127-130. |
ZHOU Xueqing, LI Hongwen, HE Jin, et al. Design of multi-segment in situ soil sampler testing bulk density [J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(8): 127-130. | |
10 | 张凯, 刘成良. 车载液压振动式土壤采集装置研究[J]. 南京信息工程大学学报(自然科学版), 2010, 2(4): 297-301. |
ZHANG Kai, LIU Chengliang. Study on vehicle-mounted soil sampling device by hydraulic vibration [J]. Journal of Nanjing University of Information Science & Technology, 2010, 2(4): 297-301. | |
11 | BAKKER T. An autonomous robot for weed control: Design, navigation and control [D]. Wageningen, the Netherlands: Wageningen University, 2009. |
12 | COUSINS D. Bosch BoniRob robot set to make field work easier for farmers [J]. Farmers Weekly, 2015, 1052: 7. |
13 | GRIMSTAD L, CONG D P, PHAN H T, et al. On the design of a low-cost, light-weight, and highly versatile agricultural robot [C]// IEEE International Workshop on Advanced Robotics and its Social Impacts, Shanghai, China, July 8-10, 2016: 1-6. |
14 | ZHANG Z Z, KAYACAN E, THOMPSON B, et al. High precision control and deep learning-based corn stand counting algorithms for agricultural robot [J]. Autonomous Robots, 2020, 44(7): 1289-1302. |
15 | 杨世胜, 张宾, 于曙风, 等. 电磁诱导农用喷雾机器人路径导航系统的设计与实现[J]. 机器人,2007, 29(1): 78-81, 87. |
YANG Shisheng, ZHANG Bin, YU Shufeng, et al. Design and implementation of the navigation system for an electromagnetic guided agricultural spraying robot [J]. Robot, 2007, 29(1): 78-81, 87. | |
16 | 罗锡文, 区颖刚, 赵祚喜, 等. 农用智能移动作业平台模型的研制[J]. 农业工程学报, 2005, 21(2): 83-85. |
LUO Xiwen, Yinggang OU, ZHAO Zuoxi, et al. Research and development of intelligent flexible chassis for precision farming [J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(2): 83-85. | |
17 | QIU Q, FAN Z Q, MENG Z J, et al. Extended ackerman steering principle for the coordinated movement control of a four wheel drive agricultural mobile robot [J]. Computers and Electronics in Agriculture, 2018, 152: 40-50. |
18 | FAN Z Q, SUN N, QIU Q, et al. In situ measuring stem diameters of maize crops with a high-throughput phenoltyping robot [J]. Remote Sensing, 2022, 14(4): 1030. |
19 | 张力群. 取土器的合理选用与改进[J]. 探矿工程(岩土钻掘工程), 2003(3): 33-34. |
ZHANG Liqun. Reasonable selection and improvement of soil samplers [J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2003(3): 33-34. | |
20 | 张剑锋, 俞灿明. 关于中国系列薄壁取土器的建议[J]. 上海地质, 1983(4): 19-27, 47. |
21 | 刘海刚. 薄壁取土器的技术参数及性能测试[J]. 勘察科学技术, 1989(4): 32-38. |
[1] | Tingting Mao, Shuxian Dong, Jinlin Xue. Dynamic function allocation of agricultural robot vehicle controlled by man-machine cooperation Dynamic function allocation of agricultural robot vehicle controlled by man-machine cooperation* [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2020, 1(1): 24-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||