Journal of Intelligent Agricultural Mechanization ›› 2025, Vol. 6 ›› Issue (1): 25-40.DOI: 10.12398/j.issn.2096-7217.2025.01.003
Previous Articles Next Articles
LI Dong1(), TANG Qiguo1, WANG Hongbo1,2, QIU Wei1,3,4, XIONG Wei1(
)
Received:
2024-11-11
Revised:
2024-12-30
Online:
2025-02-15
Published:
2025-02-15
Corresponding author:
XIONG Wei
About author:
LI Dong, E-mail: lidongmoa@126.com
Supported by:
CLC Number:
LI Dong, TANG Qiguo, WANG Hongbo, QIU Wei, XIONG Wei. Current status and trends of research on early warning and emergency control technology for major crop pests and diseases[J]. Journal of Intelligent Agricultural Mechanization, 2025, 6(1): 25-40.
Add to citation manager EndNote|Ris|BibTeX
URL: http://znhnyzbxb.niam.com.cn/EN/10.12398/j.issn.2096-7217.2025.01.003
作者 | 研究内容 | 成像方式 |
---|---|---|
BACKOULOU等[ | 不同的空间和时间维度利用多光谱技术成功识别了棉花枯萎病的病虫害胁迫区域 | 无人机多光谱遥感影像 |
赵晓阳等[ | 开发了一种对水稻病虫害发生动态进行有效监测的敏感性植被指数。 | 无人机多光谱遥感影像 |
兰玉彬等[ | 对健康和患黄龙病柑橘植株进行了建模和分类 | 无人机高光谱遥感影像 |
HUANG等[ | 对小麦健康区和患叶斑病感染区进行了准确的区分 | 无人机高光谱遥感影像 |
刘伟等[ | 进行了可见光色彩特征参数与病情指数的相关性分析,综合光谱信息预测小麦白粉病发生 | 无人机可见光影像 |
王震等[ | 对水稻病虫害进行了分析验证 | 无人机可见光影像 |
SCHMITZ等[ | 对健康甜菜和患线虫的甜菜进行了分类 | 红外热成像遥感 |
刘飞等[ | 提高了病虫害监测的准确性 | 红外热成像遥感 |
吴惠英等[ | 研发了农作物病虫害检测系统 | 激光雷达 |
Table 1 Research results of UAV remote sensing technology imaging method
作者 | 研究内容 | 成像方式 |
---|---|---|
BACKOULOU等[ | 不同的空间和时间维度利用多光谱技术成功识别了棉花枯萎病的病虫害胁迫区域 | 无人机多光谱遥感影像 |
赵晓阳等[ | 开发了一种对水稻病虫害发生动态进行有效监测的敏感性植被指数。 | 无人机多光谱遥感影像 |
兰玉彬等[ | 对健康和患黄龙病柑橘植株进行了建模和分类 | 无人机高光谱遥感影像 |
HUANG等[ | 对小麦健康区和患叶斑病感染区进行了准确的区分 | 无人机高光谱遥感影像 |
刘伟等[ | 进行了可见光色彩特征参数与病情指数的相关性分析,综合光谱信息预测小麦白粉病发生 | 无人机可见光影像 |
王震等[ | 对水稻病虫害进行了分析验证 | 无人机可见光影像 |
SCHMITZ等[ | 对健康甜菜和患线虫的甜菜进行了分类 | 红外热成像遥感 |
刘飞等[ | 提高了病虫害监测的准确性 | 红外热成像遥感 |
吴惠英等[ | 研发了农作物病虫害检测系统 | 激光雷达 |
方法 | 特点 | |
---|---|---|
机器学习 | 基于支持向量机的方法 | 小样本病虫害图像数据有良好泛化能力,但很难应对数据量较大的样本 |
基于决策树的方法 | 便于理解和解释,但易产生过拟合问题 | |
基于反向传播神经网络的方法 | 能获得良好的检测准确率,但过度依赖人工设计特征提取器 | |
基于聚类的方法 | 原理简单,效率高,但很难识别多类别病虫害 | |
基于连通域分析的方法 | 原理简单,效率高,但多数只能用于分类计数 | |
深度学习 | 两阶段方法(R-CNN、Fast-CNN、Faster-CNN等) | 计算精度较高,计算成本较高 |
单阶段方法(YOLO、SSD等) | 运行速度快,可以实时监测,检测精度较低 |
Table 2 The method of computer vision recognition
方法 | 特点 | |
---|---|---|
机器学习 | 基于支持向量机的方法 | 小样本病虫害图像数据有良好泛化能力,但很难应对数据量较大的样本 |
基于决策树的方法 | 便于理解和解释,但易产生过拟合问题 | |
基于反向传播神经网络的方法 | 能获得良好的检测准确率,但过度依赖人工设计特征提取器 | |
基于聚类的方法 | 原理简单,效率高,但很难识别多类别病虫害 | |
基于连通域分析的方法 | 原理简单,效率高,但多数只能用于分类计数 | |
深度学习 | 两阶段方法(R-CNN、Fast-CNN、Faster-CNN等) | 计算精度较高,计算成本较高 |
单阶段方法(YOLO、SSD等) | 运行速度快,可以实时监测,检测精度较低 |
环境 | 喷雾装备 | 特点 | 研发单位 |
---|---|---|---|
果园 | 融合冠层健康与体积信息的梨树 风送式智能施药装备[ | 实时探测病害和冠层体积进行变量施药 | 南京农业大学 2024 |
低矮果园环流式循环风送喷雾机[ | 利用循环气流提高雾滴在果树冠层中的覆盖率 | 南京农业大学 2021 | |
丘陵果园自走式小型靶标跟随喷雾机[ | 探测追踪靶标喷雾 | 中国农业大学 2023 | |
基于LiDAR的果园对靶变量喷药喷雾机[ | 根据果树冠层体积进行变量施药 | 西北农林科技大学 2022 | |
大田 | 电涡流空气辅助喷雾机[ | 利用涡流改善水稻中下方雾滴沉积 | 南京农业大学 2022 |
基于机器视觉和北斗定位的小麦变量喷雾机[ | 基于速度和植株密度进行变量施药 | 中国农业大学 2022 | |
大田甘蓝作物行识别与对行喷雾控制系统[ | 甘蓝作物行识别并对行喷雾 | 新疆农业大学 2022 | |
温室 | 温室风幕式施药装置[ | 风幕出风口 | 南京农业大学 2023 |
连栋温室分段变距喷雾机器人[ | 实现了无人化作业和提高作业精度 | 山东农业大学 2024 |
Table 3 Spray equipment
环境 | 喷雾装备 | 特点 | 研发单位 |
---|---|---|---|
果园 | 融合冠层健康与体积信息的梨树 风送式智能施药装备[ | 实时探测病害和冠层体积进行变量施药 | 南京农业大学 2024 |
低矮果园环流式循环风送喷雾机[ | 利用循环气流提高雾滴在果树冠层中的覆盖率 | 南京农业大学 2021 | |
丘陵果园自走式小型靶标跟随喷雾机[ | 探测追踪靶标喷雾 | 中国农业大学 2023 | |
基于LiDAR的果园对靶变量喷药喷雾机[ | 根据果树冠层体积进行变量施药 | 西北农林科技大学 2022 | |
大田 | 电涡流空气辅助喷雾机[ | 利用涡流改善水稻中下方雾滴沉积 | 南京农业大学 2022 |
基于机器视觉和北斗定位的小麦变量喷雾机[ | 基于速度和植株密度进行变量施药 | 中国农业大学 2022 | |
大田甘蓝作物行识别与对行喷雾控制系统[ | 甘蓝作物行识别并对行喷雾 | 新疆农业大学 2022 | |
温室 | 温室风幕式施药装置[ | 风幕出风口 | 南京农业大学 2023 |
连栋温室分段变距喷雾机器人[ | 实现了无人化作业和提高作业精度 | 山东农业大学 2024 |
1 | 刘杰, 曾娟, 黄冲, 等. 2024年全国农作物重大病虫害发生趋势预报[J]. 中国植保导刊, 2024, 44(1): 37-40. |
2 | 李道亮, 傅泽田, 温继文, 等. 农业病虫害远程诊断与预警技术[M]. 北京: 清华大学出版社, 2010. |
3 | 邢孔尧. 一种基于物联网的农作物病虫害监测装置[J]. 智慧农业导刊, 2022, 2(15): 1-3. |
4 | 黄冲, 刘万才. 试论物联网技术在农作物重大病虫害监测预警中的应用前景[J]. 中国植保导刊, 2015, 35(10): 55-60. |
5 | 徐健宁, 郑业鲁, 罗卫强, 等. 远程视频监控在农产品质量安全追溯系统中的应用研究[J]. 农业网络信息, 2012, 192(6): 5-8. |
XU Jianning, ZHENG Yelu, LUO Weiqiang, et al. Application of remote video monitoring in agricultural products quality traceability system [J]. Agriculture Network Information, 2012, 192(6): 5-8. | |
6 | 范俊珺, 黄奎, 陆玉, 等. 物联网技术在农作物重大病虫害监测与预警领域的应用[J]. 云南农业科技, 2020, 314(4): 47-49. |
7 | 彭卫兵, 高宗仙. 性诱害虫远程实时监测系统在蔬菜斜纹夜蛾监测中的应用效果研究[J]. 现代农业科技, 2017, 696(10): 106-107, 109. |
8 | 许秀琴, 刘媛, 陆明红, 等. 害虫远程实时监测系统在棉铃虫性诱监测上的应用初报[J]. 宁夏农林科技, 2019, 60(3): 37-38. |
XU Xiuqin, LIU Yuan, LU Minghong, et al. Application of pest remote real-time monitoring system for attractiveness of cotton bollworm [J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2019, 60(3): 37-38. | |
9 | 崔亚琴. 遥感技术在森林病虫害 监测研究中的应用[J]. 山西林业科技, 2018, 47(4): 25-28. |
CUI Yaqin. Application of remote sensing technology in monitoring of forest diseases and pests [J]. Shanxi Forestry Science and Technology, 2018, 47(4): 25-28. | |
10 | 何芳. 遥感技术在农作物病虫害预警监测中的应用[J]. 南方农机, 2022, 53(4): 50-52. |
11 | 罗顶胜. 林业资源调查中无人机遥感技术的应用[J]. 南方农业, 2021, 15(12): 134-135. |
12 | 隆琅. 无人机遥感技术在森林病虫害监测的应用[J]. 广西农业机械化, 2023, 239(1): 48-50. |
13 | 宋勇, 陈兵, 王琼, 等. 无人机遥感监测作物病虫害研究进展[J]. 棉花学报, 2021, 33(3): 291-306. |
SONG Yong, CHEN Bing, WANG Qiong, et al. Research advances of crop diseases and insect pests monitoring by unmanned aerial vehicle remote sensing [J]. Cotton Science, 2021, 33(3): 291-306. | |
14 | BACKOULOU G F, ELLIOTT N C, GILES K, et al. Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors[J]. Computers and Electronics in Agriculture, 2011, 78(2): 123-129. |
15 | 赵晓阳, 张建, 张东彦, 等. 低空遥感平台下可见光与多光谱传感器在水稻纹枯病病害评估中的效果对比研究[J]. 光谱学与光谱分析, 2019, 39(4): 1192-1198. |
ZHAO Xiaoyang, ZHANG Jian, ZHANG Dongyan, et al. Comparison between the effects of visible light and multispectral sensor based on low-altitude remote sensing platform in the evaluation of rice sheath blight [J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1192-1198. | |
16 | 兰玉彬, 朱梓豪, 邓小玲, 等. 基于无人机高光谱遥感的柑橘黄龙病植株的监测与分类[J]. 农业工程学报, 2019, 35(3): 92-100. |
LAN Yubin, ZHU Zihao, DENG Xiaoling, et al. Monitoring and classification of citrus Huanglongbing based on UAV hyperspectral remote sensing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 92-100. | |
17 | HUANG H S, DENG J Z, LAN Y B, et al. Detection of Helminthosporium leaf blotch disease based on UAV imagery [J]. Applied Sciences, 2019, 9(3): 558. |
18 | 刘伟. 小麦白粉病的遥感监测及空气中病菌孢子的时空动态研究[D]. 合肥: 安徽农业大学, 2014. |
LIU Wei. Monitoring of wheat powdery mildew by using remote sensing and spatiotemporal dynamics of airborne conidia of blumeria graminis f . sp. tritici [D]. Hefei: Anhui Agricultural University, 2014. | |
19 | 王震, 褚桂坤, 张宏建, 等. 基于无人机可见光图像Haar-like特征的水稻病害白穂识别[J]. 农业工程学报, 2018, 34(20): 73-82. |
WANG Zhen, CHU Guikun, ZHANG Hongjian, et al. Identification of diseased empty rice panicles based on Haar-like feature of UAV optical image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 73-82. | |
20 | SCHMITZ A, KIEWNICK S, SCHLANG J, et al. Use of high resolution digital thermography to detect Heterodera schachtii infestation in sugar beets [J]. Communications in Agricultural and Applied Biological Sciences, 2004, 69(3): 359-363. |
21 | 刘飞, 曹峰, 孔汶汶, 等. 一种基于无人机多源图像融合的作物病害监测方法和系统[P]. 中国专利: CN108346143A, 2018-07-31 |
22 | 吴惠英, 周彬, 陆军, 等. 一种基于无人机的农作物病虫害监测系统和方法[P]. 中国专利: CN104035412A, 2014-09-10. |
23 | 蒋金豹, 陈云浩, 黄文江. 利用高光谱红边与黄边位置距离识别小麦条锈病[J]. 光谱学与光谱分析, 2010, 30(6): 1614-1618. |
JIANG Jinbao, CHEN Yunhao, HUANG Wenjiang. Using the distance between hyperspectral red edge position and yellow edge position to identify wheat yellow rust disease [J]. Spectroscopy and Spectral Analysis, 2010, 30(6): 1614-1618. | |
24 | SINGH C B, JAYAS D S, PALIWAL J, et al. Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging [J]. Journal of Stored Products, 2009, 45(3): 151-162. |
25 | CHANDRA B S, DIGVIR S J, JITENDRA P. Identification of insect-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging [J]. Computers and Electronics in Agriculture, 2010, 73(2): 115-130. |
26 | 齐龙, 马旭, 梁柏, 等. 稻瘟病监测预测方法研究现状及流行风险评估体系构建初探[J]. 中国农学通报, 2011, 27(33): 213-216. |
QI Long, MA Xu, LIANG Bai, et al. Research on present status of rice blast monitoring and prediction methods and preliminary establishment of disease epidemic risk assessment system [J]. Chinese Agricultural Science Bulletin, 2011, 27(33): 213-216. | |
27 | 冯雷, 柴荣耀, 孙光明, 等. 基于多光谱成像技术的水稻叶瘟检测分级方法研究[J]. 光谱学与光谱分析, 2009, 29(10): 2730-2733. |
FENG Lei, CHAI Rongyao, SUN Guangming, et al. Identification and classification of rice leaf blast based on multi-spectral imaging sensor [J]. Spectroscopy and Spectral Analysis, 2009, 29(10): 2730-2733. | |
28 | 郑志雄, 齐龙, 马旭, 等. 基于高光谱成像技术的水稻叶瘟病病害程度分级方法[J]. 农业工程学报, 2013, 29(19): 138-144. |
ZHENG Zhixiong, QI Long, MA Xu, et al. Grading method of rice leaf blast using hyperspectral imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(19): 138-144. | |
29 | 刘占宇. 水稻主要病虫害胁迫遥感监测研究[D]. 杭州: 浙江大学, 2008. |
LIU Zhanyu. Monitoring the rice disease and insect stress with remote sensing [D]. Hangzhou: Zhejiang Univeisity, 2008. | |
30 | 李玮. 农业病虫害监测中高光谱遥感技术应用研究进展[J]. 现代农业科技, 2019, 748(14): 126-128. |
LI Wei. Research progress on application of hyperspectral remote sensing technology in pest and disease monitoring [J]. Modern Agricultural Science and Technology, 2019, 748(14): 126-128. | |
31 | 何芳. 遥感技术在农作物病虫害预警监测中的应用[J]. 南方农机, 2022, 53(4): 50-52. |
32 | 翟保平. 追踪天使——雷达昆虫学30年[J]. 昆虫学报, 1999(3): 315-326. |
ZHAI Baoping. Tracking angels: 30 years of radar entomology [J]. Acta Entomologica Sinica, 1999(03): 315-326. | |
33 | 崔亚琴. 遥感技术在森林病虫害监测研究中的应用[J]. 山西林业科技, 2018, 47(4): 25-28. |
CUI Yaqin. Application of remote sensing technology in monitoring of forest diseases and pests [J]. Shanxi Forestry Science and Technology, 2018, 47(4): 25-28. | |
34 | DRAKE A. Automatically operating radars for monitoring insect pest migrations [J]. Entomologia Sinica, 2002, 9(4): 27-45. |
35 | 杨秀好, 骆有庆, GREGG Henderson, 等. 基于雷达遥感技术的土栖白蚁探测[J]. 林业科学, 2012, 48(1): 115-120. |
YANG Xiuhao, LUO Youqing, GREGG Henderson, et al. Subterranean termite detection with a ground penetrating radar technique [J]. Scientia Silvae Sinicae, 2012, 48(1): 115-120. | |
36 | 王松寒, 何隆华. 雷达遥感技术在水稻识别中的研究进展[J]. 遥感信息, 2015, 30(2): 3-9. |
WANG Songhan, HE Longhua. Advances of rice recognition by SAR [J]. Remote Sensing Information, 2015, 30(2): 3-9. | |
37 | TAMMY S, BOGGESS S, DENITA H, et al. Conventional gel electrophoresis and taqman probes enable rapid confirmation of thousand cankers disease from diagnostic samples [J]. Plant Disease, 2021, 10(105): 3171-3180. |
38 | XIE C, WANG R, ZHANG J, et al. Multi-level learning features for automatic classification of field crop pests. Computers and Electronics in Agriculture [J]. 2018, 152: 233-241. |
39 | FU X, GUO Q, SUN H. Statistical machine learning model for stochastic optimal planning of distribution networks considering a dynamic correlation and dimension reduction [J]. IEEE Transactions on Smart Grid, 2020, 11(4): 2904-2917. |
40 | NGUGI L C, ABELWAHAB M, ABO-ZAHHAD M. Recent advances in image processing techniques for automated leaf pest and disease recognition-A review [J]. Information Processing in Agriculture, 2021, 8(1): 23-60. |
41 | KEAGY P M, SCHATZKI T F. Machine recognition of weevil damage in wheat radiographs [J]. Cereal Chemistry, 1993, 836: 108-119. |
42 | ZAYAS I Y, FLINN P W. Detection of insects in bulk wheat samples with machine vision [J]. Transactions of the ASAE, 1998, 41(3): 883-888. |
43 | CHRISTOPHER R, ROY D, JOHN C. Imaging for the high-speed detection of pest insects and other contaminants in cereal grain in transit [C]// 2001 ASAE Annual International Meeting, Sacramento Convention Center, Sacramento, California, USA. 2001, 7. |
44 | DARRELL T, GORDON G, HARVILLE M, et al. Integrated person tracking using stereo, color, and pattern detection [J]. International Journal of Computer Vision, 1998, 37(2), 175-185. |
45 | WANG R, JIAO L, XIE C, et al. S-RPN: Sampling-balanced region proposal network for small crop pest detection [J]. Computers and Electronics in Agriculture, 2021, 87. |
46 | TASSIS, LUCAS M, TOZZI D S, et al. A deep learning approach combining instance and semantic segmentation to identify diseases and pests of coffee leaves from in-field images [J]. Computers and Electronics in Agriculture, 2021, 186. |
47 | 应义斌, 景寒松, 马俊福, 等. 机器视觉技术在黄花梨尺寸和果面缺陷检测中的应用[J]. 农业工程学报, 1999(1): 203-206. |
48 | 柴阿丽, 李宝聚, 王倩, 等. 基于计算机视觉技术的番茄叶片叶绿素含量的检测[J]. 园艺学报, 2009, 36(1): 45-52. |
CHAI Ali, LI Baoju, WANG Qian, et al. Detecting chlorophyll content of tomato leaves with technology of computer vision [J]. Acta Horticulturae Sinica, 2009, 36(1): 45-52. | |
49 | 孙云云, 江朝晖, 董伟, 等. 基于卷积神经网络和小样本的茶树病害图像识别[J]. 江苏农业学报, 2019, 35(1): 48-55. |
SUN Yunyun, JIANG Zhaohui, DONG Wei, et al. Image recognition of tea plant disease based on convolutional neural network and small samples [J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(1): 48-55. | |
50 | 钟林忆, 刘海峰, 董力中, 等. 计算机视觉下的农作物病虫害图像识别研究[J]. 现代农业装备, 2021, 42(1): 51-55. |
ZHONG Linyi, LIU Haifeng, DONG Lizhong, et al. Image recognition of crop diseases and insect pests based on computer vision [J]. Modern Agricultural Equipment, 2021, 42(1): 51-55. | |
51 | LIU Z, WILLIAMSON M S, LANSDELL S J, et al. A nicotinic acetyl-choline receptor mutation conferring target-site resistance to imidacloprid in Nila parvata lugens(brown planthopper) [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 8420-8425. |
52 | LIU Z, HAN Z, WANG Y, et al. Selection for imidacloprid resistance in Nila parvata lugens: cross resistance patterms and possible mech-anisms [J]. Pest Management Science, 2003, 59: 770-775. |
53 | 王娜. 河北邢台和江苏南京地区棉蚜对丁硫克百威和吡虫啉的抗性研究[D]. 南京: 南京农业大学, 2013. |
WANG Na. Carbosulfan and imidacloprid resistance of field population cotton aphid in Hebei Xingtai and Jiangsu Nanjing district [D]. Nanjing: Nanjing Agricultural University, 2013. | |
54 | LIU X N, LIANG P, GAO X W, et al. Induction of the cyto-chrome P450 activity by plant allelochemicals in the cotton bollworm, Helicoverpa armigera(Hübner) [J]. Pesticide Bio-chemistry and Physiology, 2006, 84: 127-134. |
55 | 李越, 朱鹤, 单莹, 等. 双酰肼类杀虫剂及对小菜蛾的防治研究进展[J]. 农药, 2023, 62(5): 313-318. |
LI Yue, ZHU He, SHAN Ying, et al. Research progress of diacylhydrazine insecticides and their control of Plutella xylostella(L.) [J]. Agrochemicals, 2023, 62(5): 313-318. | |
56 | 李振宇, 叶乐夫, 甘杨广, 等. 木醋液对两种药剂防治桃蚜的增效作用[J]. 中山大学学报(自然科学版)(中英文), 2023, 62(6): 71-79. |
LI Zhenyu, YE Lefu, GAN Yangguang, et al. The synergistic effect of wood vinegar on two kinds of pesticides against myzus persicae[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2023, 62(6): 71-79. | |
57 | 王文璐, 梁鹏, 宁杰, 等. 不同杀虫剂对3种设施蔬菜烟粉虱的田间防效评价[J]. 中国蔬菜, 2023(9): 105-109. |
WANG Wenlu, LIANG Peng, NING Jie, et al. Field efficacy evaluation of different insecticides on bemisia tabaci in three greenhouse vegetables [J]. China Vegetables, 2023(9): 105-109. | |
58 | 茹宁辰, 姜珊, 纠敏, 等. 烟粉虱取食及其与TYLCCNV共侵染对烟草植株内H2O2的诱导响应[J]. 安徽农学通报, 2023, 29(6): 119-124. |
RU Ningchen, JIANG Shan, Min JIU, et al. H2O2 Responses in tobacco plants induced by whitefly bemisia tabaci and its co-infection with tomato yellow leaf curl China virus [J]. Anhui Agricultural Science Bulletin, 2023, 29(6): 119-124. | |
59 | 翁良宏, 翟勤, 刘苏. 22%联苯·噻虫嗪悬乳剂对烟粉虱和温室白粉虱的防治效果研究[J]. 现代农业科技, 2022(14): 52-54, 58. |
WENG Lianghong, ZHAI Qin, LIU Su. Effect of 22% bifenthrin·thiamethoxam SE against bemisia tabaci and trialeurodes vaporariorum [J]. Modern Agricultural Science and Technology, 2022(14): 52-54, 58. | |
60 | 程兆东. 不同种衣剂对小麦蚜虫防效及小麦产量的影响[J]. 乡村科技, 2022, 13(12): 64-66. |
61 | CHEN M, HAN Z. Cloning and sequence analysis of 2 different acetylcholinesterase genes in Rhopalosi phum padi and Sitobion avenae [J]. Genome, 2006, 49(3): 239-243. |
62 | 丁为民, 赵思琪, 赵三琴, 等. 基于机器视觉的果树树冠体积测量方法研究[J]. 农业机械学报, 2016, 47(6): 1-10, 20. |
DING Weimin, ZHAO Siqi, ZHAO Sanqin, et al. Measurement methods of fruit tree canopy volume based on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 1-10, 20. | |
63 | 邱威, 孙浩, 孙玉慧, 等. 低矮果园环流式循环风送喷雾机设计与试验[J]. 农业工程学报, 2021, 37(6): 18-25. |
QIU Wei, SUN Hao, SUN Yuhui, et al. Design and test of circulating air-assisted sprayer for dwarfed orchard [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 18-25. | |
64 | 李文伟, 江世界, 徐平凡, 等. 丘陵果园自走式小型靶标跟随喷雾机设计与试验[J]. 农业机械学报, 2023, 54(9): 188-197. |
LI Wenwei, JIANG Shijie, XU Pingfan, et al. Design and experiment of self-propelled small target following sprayer for hilly orchard [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(9): 188-197. | |
65 | 窦汉杰, 翟长远, 王秀, 等. 基于LiDAR的果园对靶变量喷药控制系统设计与试验[J]. 农业工程学报, 2022, 38(3): 11-21. |
DOU Hanjie, ZHAI Changyuan, WANG Xiu, et al. Design and experiment of the orchard target variable spraying control system based on LiDAR [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(3): 11-21. | |
66 | WEI Q, HONGBIN G, YUBIN C, et al. An electrical vortex air-assisted spraying system for improving droplet deposition on rice [J]. Pest Management Science, 2022, 78(10): 4037-4047. |
67 | 杨文超, 何进, 周靖凯, 等. 基于机器视觉和北斗定位的小麦变量喷雾系统研究[J]. 农业机械学报, 2022, 53(7): 150-161. |
YANG Wenchao, HE Jin, ZHOU Jingkai, et al. Design of wheat variable spray system based on machine vision and beidou positioning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 150-161. | |
68 | 韩长杰, 郑康, 赵学观, 等. 大田甘蓝作物行识别与对行喷雾控制系统设计与试验[J]. 农业机械学报, 2022, 53(6): 89-101. |
HAN Changjie, ZHENG Kang, ZHAO Xueguan, et al. Design and experiment of row identi6cation and row-oriented spray control system for field cabbage crops [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 89-101. | |
69 | 邱威, 邬伊浩, 周慧能, 等. 温室风幕式施药装置设计与试验[J]. 南京农业大学学报, 2023, 46(2): 405-415. |
QIU Wei, WU Yihao, ZHOU Huineng, et al. Design and test of greenhouse air curtain spraying device [J]. Journal of Nanjing Agricultural University, 2023, 46(2): 405-415. | |
70 | 李天华, 董广胜, 姚玉康, 等. 连栋温室分段变距喷雾机器人设计与试验[J]. 农业机械学报, 2024, 55(2): 170-179. |
LI Tianhua, DONG Guangsheng, YAO Yukang, et al. Design and experiment of segmented and variable distance spraying robot for multi-span greenhouse [J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(2): 170-179. | |
71 | 高希武. 我国害虫化学防治现状与发展策略[J]. 植物保护, 2010, 36(4): 19-22. |
GAO Xiwu. Current status and development strategy for chemical control in China [J]. Plant Protection, 2010, 36(4): 19-22. | |
72 | 陈晓霞, 闫海燕, 魏玮, 等. 光谱和光强度对龟纹瓢虫成虫趋光行为的影响[J]. 生态学报, 2009, 29(5): 2349-2355. |
CHEN Xiaoxia, YAN Haiyan, WEI Wei, et al. Effect of spectral sensitivity and intensity response on the phototaxis of Propylea japonica(Thunberg) [J]. Acta Ecologica Sinica, 2009, 29(5): 2349-2355. | |
73 | 蒋月丽, 张建周, 袁水霞, 等. 黄色灯防治害虫的研究与应用进展[J]. 植物保护, 2018, 44(3): 6-10. |
JIANG Yueli, ZHANG Jianzhou, YUAN Shuixia, et al. Progresses in the research and application of yellow light for pest control [J]. Plant Protection, 2018, 44(3): 6-10. | |
74 | 罗丰, 袁廷庆, 柯用春, 等. 不同颜色防虫网对豇豆生长特性、产量及蓟马发生量的影响[J]. 南方农业学报, 2014, 45(09): 1584-1588. |
LUO Feng, YUAN Tingqing, KE Yongchun, et al. Effects of different color insect-proof nets on occurrence of thrips and growth characteristics and yield of cowpea [J]. Journal of Southern Agriculture, 2014, 45(9): 1584-1588. | |
75 | 陈连珠, 张雪彬, 陶凯, 等. 彩色防虫网覆盖光质差异及其对豇豆生长和产量的影响[J]. 广东农业科学, 2019, 46(2): 45-50. |
CHEN Lianzhu, ZHANG Xuebin, TAO Kai, et al. Difference of light quality under fly nets with different colours and its effects on the growth and yield of cowpea [J]. Guangdong Agricultural Sciences, 2019, 46(2): 45-50. | |
76 | 史彩华. “日晒高温覆膜法”在韭蛆防治中的应用[J]. 中国蔬菜, 2017(7): 90. |
77 | 李元英, 楼洪章, 张和琴. 玉米螟的多配性与辐射不育法的应用[J]. 中国农业科学, 1980(2): 79-82, 99-100. |
LI Yuanying, LOU Hongzhang, ZHANG Heqin. Multipie mating of corn borer (ostrinina nubilalis hubner) and the application of radio-sterility method [J]. Scientia Agricultura Sinica, 1980(2): 79-82, 99-100. | |
78 | 朱开成. 生物防治在农业病虫害防治中的应用现状及研究展望[J]. 种子科技, 2023, 41(12): 106-108. |
79 | 陈卓, 王俊杰, 邹华芬, 等. 广东冬作区抗青枯病马铃薯新品种筛选[J]. 中国马铃薯, 2020, 34(6): 329-336. |
CHEN Zhuo, WANG Junjie, ZOU Huafen, et al. Screening of new potato varieties resistant to bacterial wilt in winter cultivation area of Guangdong Province [J]. Chinese Potato Journal, 2020, 34(6): 329-336. | |
80 | 王海玄. 广西不同玉米品种对6种病原镰刀菌的抗性研究[D]. 南宁: 广西大学, 2019. |
WANG Haixuan. Resistance of different maize varieties to six fusarium in Guangxi [D]. Nanning: Guangxi University, 2019. | |
81 | 李文凤, 王晓燕, 黄应昆, 等. 甘蔗新品种(系)对甘蔗花叶病的抗性评价[C]//中国植物保护学会. 植保科技创新与农业精准扶贫——中国植物保护学会2016年学术年会论文集. 中国农业科学技术出版社, 2016: 1. |
82 | 张凯, 陈彦宾, 张昭, 等. 中国“十四五”重大病虫害防控综合技术研发实施展望[J]. 植物保护学报, 2022, 49(1): 69-75. |
ZHANG Kai, CHEN Yanbin, ZHANG Zhao, et al. Research and development of techniques for integrated control of major diseases and insect pests during the Fourteenth Five-Year Plan in China [J]. Journal of Plant Protection, 2022, 49(1): 69-75. | |
83 | 袁龙宇, 李燕芳, 肖汉祥, 等. 褐飞虱致害性变异机制研究进展[J]. 环境昆虫学报, 2022, 44(2): 297-304. |
YUAN Longyu, LI Yanfang, XIAO Hanxiang, et al. Research progress on mechanism of virulence of the brown planthopper (Hemiptera: Delphacidae) [J]. Journal of Environmental Entomology, 2022, 44(2): 297-304. | |
84 | YE W, YU H, JIAN Y, et al. A salivary EF-hand calciumbinding protein of the brown planthopper Nilaparvata lugens functions as an effector for defense responses in rice [J]. Scientific Reports, 2017, 7: 40498. |
85 | 郑瑜. 褐飞虱IR56种群致害性及中肠转录组的研究[D]. 北京: 中国农业科学院, 2016. |
ZHENG Yu. Studies on the virulence and midgut transcriptome of Nilaparvata lugens (Stål) population reared on rice resistant variety IR56 [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. | |
86 | MAXWELL F G. 植物抗虫育种[M]. 北京: 农业出版社, 1985. |
87 | 王学军, 陈满峰, 葛红, 等. 植物抗虫性及其遗传改良研究进展[J]. 现代农药, 2015, 14(3): 10-14. |
WANG Xuejun, CHEN Manfeng, GE Hong, et al. Plant resistance to pest and research progress of genetic improvements [J]. Modern Agrochemicals, 2015, 14(3): 10-14. | |
88 | STEWART C N, ADANG M J, ALL J N, et al. Genetic Transformation, recovery, and characterization of fertile soybean transgenic for a synthetic bacillus thuringiensis cryIAc gene [J]. Plant Physiology, 1996, 112(1): 121-129. |
89 | 郭东全, 杨向东, 包绍君, 等. 转CryIA和CpTI双价抗虫基因大豆的获得与稳定表达[J]. 中国农业科学, 2008, 41(10): 2957-2962. |
GUO Dongquan, YANG Xiangdong, BAO Shaojun, et al. Synchronous expression of CryIA and CpTI genes in soybean and analysis of their resistance to insect pests [J]. Scientia Agricultura Sinica, 2008, 41(10): 2957-2962. | |
90 | WEI P, YAO Y, ZHU X, et al. Breeding of transgenic rice restorer line for multiple resistance against bacterial blight, striped stem borer and herbicide [J]. Euphytica, 2008, 163(2): 177-184. |
91 | ZHU S, WALKER D R, BOERMA H R, et al. Effects of defoliating insect resistance qtls and a cry 1Ac transgene in soybean near-isogenic lines [J]. Theoretical and Applied Genetics, 2008, 116(4): 455-463. |
92 | 吴有刚, 金京, 杨胜祥, 等. 昆虫抗药性产生机制[J]. 生物安全学报, 2019, 28(03): 159-169. |
WU Yougang, JIN Jing, YANG Shengxiang, et al. Insect resistance development mechanism [J]. Journal of Biosafety, 2019, 28(3): 159-169. | |
93 | HEMINGWAY J, HAWKES N J, MCCARROLL L,et al. The molecular basis of insecticide resistance in mosquitoes [J]. Insect Biochemistry and Molecular Biology, 2004, 34(7): 653-665. |
94 | BLACKHALL W J, PRICHARD R K, BEECH R N, et al. Selection at a gamma-aminobutyric acid receptor gene in Hae-monchus contortus resistant to avermectins/milbemycins [J]. Molecular and Biochemical Parasitology, 2003, 131(2): 137-145. |
95 | LU K, WANG Y, CHEN X, ZHANG Z C, et al. Characterization and functional analysis of a carboxy-lesterase gene associated with chlorpyrifos resistance in Nilapa-rvata lugens [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2017, 203: 12-20. |
96 | CHEN L P, WANG P, SUN Y J, et al. Direct inter-action of avermectin with epidermal growth factor receptor mediates the penetration resistance in Drosophila larvae [J]. Open Biology, 2016, 6(4): 150231. |
97 | 付均惠, 张倩. 浅析林业害虫防治的生态调控研究[J]. 生物灾害科学, 2021, 44(2): 119-122. |
FU Junhui, ZHANG Qian. Analysis of ecological regulation of pest control in forestry [J]. Biological Disaster Science, 2021, 44(2): 119-122. | |
98 | 张菲菲. 农作物栽培病虫害生态调控[J]. 江西农业, 2018(18): 27. |
99 | 李亦白, 曹光乔. 基于模拟退火算法的飞防队调度模型研究[J]. 智能化农业装备学报(中英文), 2022, 3(2): 1-9. |
LI Yibai, CAO Gunagqiao. Research on the scheduling model of flying defense team based on simulated annealing algorithm [J]. Journal of Intelligent Agricultural Mechanization, 2022, 3(2): 1-9. |
[1] | LIU Zheng, JIN Chengqian, FENG Yugang, YANG Tengxiang. Research status and trends of intelligent technology in plant protection machinery [J]. Journal of Intelligent Agricultural Mechanization, 2024, 5(1): 40-50. |
[2] | Li Yibai, Cao Gunagqiao. Research on the scheduling model of flying defense team based on simulated annealing algorithm [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2022, 3(2): 1-9. |
[3] | Feilu Li, Lan Yang, Yu Li, Jianfang Li, Liangyu Lei. Research on application performance of UAV for plant protection and its countermeasure: Take Xiaoshan District, Hangzhou City for example#br# [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2021, 2(2): 64-70. |
[4] | Xiwen Luo. Artificial intelligence and plant protection mechanization [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2020, 1(1): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||