[1] KONDO N. Study on grape harvesting robot [J]. IFAC Proceedings Volumes, 1991, 24(11): 243-246.
[2] REIS M J C S, MORAIS R, PEREIRA C, et al. A lowcost system to detect bunches of grapes in natural environment from color images [C]∥Advanced Concepts for Intelligent Vision Systems: 13th International Conference, ACIVS 2011, Ghent, Belgium, August 22-25, 2011. Proceedings 13. Springer Berlin Heidelberg, 2011: 92-102.
[3] BEHROOZIKHAZAEI N, MALEKI M R. A robust algorithm based on color features for grape cluster segmentation [J]. Computers and Electronics in Agriculture, 2017, 142: 41-49.
[4] PREZZAVALA R, TORRESTORRITI M, CHEEIN F A, et al. A pattern recognition strategy for visual grape bunch detection in vineyards [J]. Computers and Electronics in Agriculture, 2018, 151: 136-149.
[5] CECOTTI H, RIVERA A, FARHADLOO M, et al. Grape detection with convolutional neural networks [J]. Expert Systems with Applications. 2020, 159: 113588.
[6] AGUIAR A S, MAGALHES S A, DOS SANTOS F N, et al. Grape bunch detection at different growth stages using deep learning quantized models [J]. Agronomy, 2021, 11(9): 1890.
[7] PEREIRA C S, MORAIS R, REIS M J. Deep learning techniques for grape plant species identification in natural images [J]. Sensors, 2019, 19(22): 4850.
[8] MARANI R, MILELLA A, PETITTI A, et al. Deep neural networks for grape bunch segmentation in natural images from a consumergrade camera [J]. Precision Agriculture, 2021, 22(2): 387-413.
[9] FERNNDEZ R, MONTES H, SALINAS C, et al. Combination of RGB and multispectral imagery for discrimination of cabernet sauvignon grapevine elements [J]. Sensors, 2013, 13(6): 7838-7859.
[10] 罗陆锋, 邹湘军, 熊俊涛, 等. 自然环境下葡萄采摘机器人采摘点的自动定位[J]. 农业工程学报, 2015, 31(2): 14-21.
LUO Lufeng, ZOU Xiangjun, XIONG Juntao, et al. Automatic positioning for picking point of grape picking robot in natural environment [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 14-21.
[11] 熊俊涛, 何志良, 汤林越, 等. 非结构环境中扰动葡萄采摘点的视觉定位技术[J]. 农业机械学报, 2017, 48(4): 29-33, 81.
XIONG Juntao, HE Zhiliang, TANG Linyue, et al. Visual localization of disturbed grape picking point in nonstructural environment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 29-33, 81.
[12] 马本学, 贾艳婷, 梅卫江, 等. 不同自然场景下葡萄果实识别方法研究[J]. 现代食品科技, 2015, 31(9): 145-149, 168.
MA Benxue, JIA Yanting, MEI Weijiang, et al. Study on the recognition method of grape in different natural environment [J]. Modern Food Science and Technology, 2015, 31(9): 145-149, 168.
[13] 邱津怡, 罗俊, 李秀, 等. 基于卷积神经网络的多尺度葡萄图像识别方法[J]. 计算机应用, 2019, 39(10): 2930-2936.
QIU Jinyi, LUO Jun, LI Xiu, et al. Multiscale grape image recognition method based on convolutional neural network [J]. Journal of Computer Applications, 2019, 39(10): 2930-2936.
[14] 刘平, 朱衍俊, 张同勋, 等. 自然环境下贴叠葡萄串的识别与图像分割算法[J]. 农业工程学报, 2020, 36(6): 161-169.
LIU Ping, ZHU Yanjun, ZHANG Tongxun, et al. Algorithm for recognition and image segmentation of overlapping grape cluster in natural environment [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 161-169.
[15] 雷旺雄, 卢军. 基于全卷积网络与凹点搜索的重叠葡萄分割算法[J]. 光电子·激光, 2021, 32(3): 231-240.
LEI Wangxiong, LU Jun. Overlapping grape segmentation algorithm based on full convolutional network and concave point search [J]. Journal of Optoelectronics·Laser, 2021, 32(3): 231-240.
[16] 罗陆锋, 邹湘军, 叶敏, 等. 基于双目立体视觉的葡萄采摘防碰空间包围体求解与定位[J]. 农业工程学报, 2016, 32(8): 41-47.
LUO Lufeng, ZOU Xiangjun, YE Min, et al. Calculation and localization of bounding volume of grape for undamaged fruit picking based on binocular stereo vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8): 41-47.
[17] 罗陆锋, 邹湘军, 王成琳, 等. 基于轮廓分析的双串叠贴葡萄目标识别方法[J]. 农业机械学报, 2017, 48(6): 15-22.
LUO Lufeng, ZOU Xiangjun, WANG Chenglin, et al. Recognition method for two overlapping and adjacent grape clusters based on image contour analysis [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(6): 15-22.
[18] 宁政通, 罗陆锋, 廖嘉欣, 等. 基于深度学习的葡萄果梗识别与最优采摘定位[J]. 农业工程学报, 2021, 37(9): 222-229.
NING Zhengtong, LUO Lufeng, LIAO Jiaxin, et al. Recognition and the optimal picking point location of grape stems based on deep learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 222-229.
[19] YIN W, WEN H J, NING Z T, et al. Fruit detection and pose estimation for grape cluster—harvesting robot using binocular imagery based on deep neural networks [J]. Frontiers in Robotics and AI, 2021, 8: 626989.
[20] NING Z T, LUO L F, DING X M, et al. Recognition of sweet peppers and planning the robotic picking sequence in highdensity orchards [J]. Computers and Electronics in Agriculture, 2022, 196: 106878.
[21] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection [J]. arXiv: 2004.10934, 2020.
[22] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module [C]∥ Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.
[23] MISRA D. Mish: A self regularized nonmonotonic activation function [J]. arXiv:1908.08681, 2019.
[24] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [C]∥ Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018: 8759-8768.
[25] GE Z, LIU S T, WANG F, et al. YOLOX: Exceeding YOLO series in 2021 [J]. arXiv: 2107.08430, 2021.
[26] ZHU X K, L S C, WANG X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on dronecaptured scenarios [C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 2778-2788.
[27] TANG Y C, CHEN M Y, WANG C L, et al. Recognition and localization methods for visionbased fruit picking robots: A review [J]. Frontiers in Plant Science, 2020, 11: 510.
[28] TIAN H K, WANG T H, LIU Y D, et al. Computer vision technology in agricultural automation—A review [J]. Information Processing in Agriculture, 2020, 7(1): 1-9.
|