Journal of Intelligent Agricultural Mechanization ›› 2023, Vol. 4 ›› Issue (3): 50-60.DOI: 10.12398/j.issn.2096-7217.2023.03.006
Previous Articles Next Articles
GAO Zhen1,2(), LU Caiyun1,2(), LI Hongwen1,2, HE Jin1,2, WANG Qingjie1,2, GUO Zhaoyang1,2
Received:
2023-05-09
Revised:
2023-07-23
Online:
2023-08-15
Published:
2023-08-15
Corresponding author:
LU Caiyun
CLC Number:
GAO Zhen, LU Caiyun, LI Hongwen, HE Jin, WANG Qingjie, GUO Zhaoyang. Research progress and the prospect of crucial technology of seed spacing information detection based on computer vision[J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(3): 50-60.
Add to citation manager EndNote|Ris|BibTeX
URL: http://znhnyzbxb.niam.com.cn/EN/10.12398/j.issn.2096-7217.2023.03.006
相机类型 | 适用场景 | 优点 | 缺点 |
---|---|---|---|
普通相机 | 实际播种过程中的种子粒距和种子分布信息检测 | 体积小,易于安装,环境适应性强,且对处理器要求较低 | 采集帧率低,无法适用于高速运动的种子目标检测 |
高速摄像机 | 实验室中排种器排种效果或种子运动状态的理论研究 | 采集帧率高,可检测高速运动的种子 | 体积大,对作业环境和处理器性能要求较高 |
无人机 | 播后苗期检测,通过植株位置判断播种时的种子位置 | 作业效率高,且不受播种作业环境影响 | 出苗后检测,种子位置易受植株叶片影响 |
Table 1 Comparison of the use scenarios and advantages and disadvantages of different cameras
相机类型 | 适用场景 | 优点 | 缺点 |
---|---|---|---|
普通相机 | 实际播种过程中的种子粒距和种子分布信息检测 | 体积小,易于安装,环境适应性强,且对处理器要求较低 | 采集帧率低,无法适用于高速运动的种子目标检测 |
高速摄像机 | 实验室中排种器排种效果或种子运动状态的理论研究 | 采集帧率高,可检测高速运动的种子 | 体积大,对作业环境和处理器性能要求较高 |
无人机 | 播后苗期检测,通过植株位置判断播种时的种子位置 | 作业效率高,且不受播种作业环境影响 | 出苗后检测,种子位置易受植株叶片影响 |
检测算法 | 优点 | 缺点 | |
---|---|---|---|
图像处理 | 灰度化处理、二值化、膨胀、腐蚀等技术,以及形态学运算、轮廓检测 | 对处理器要求较低 | 对图像质量要求较高,需人工调整参数和阈值,难以用于复杂场景和不规则形状的图像检测 |
机器学习 | K均值聚类、支持向量机。YOLO系列深度学习目标检测算法 | 准确率和效率较高,智能化和自适应性更强 | 需要大量的标注数据和计算资源,对处理器性能要求较高 |
Table 2 Comparison of the advantages and disadvantages of different detection algorithms
检测算法 | 优点 | 缺点 | |
---|---|---|---|
图像处理 | 灰度化处理、二值化、膨胀、腐蚀等技术,以及形态学运算、轮廓检测 | 对处理器要求较低 | 对图像质量要求较高,需人工调整参数和阈值,难以用于复杂场景和不规则形状的图像检测 |
机器学习 | K均值聚类、支持向量机。YOLO系列深度学习目标检测算法 | 准确率和效率较高,智能化和自适应性更强 | 需要大量的标注数据和计算资源,对处理器性能要求较高 |
检测方法 | 应用场景 | 优点 | 缺点 |
---|---|---|---|
种子在排种器内运动的性能检测 | 取种、排种过程 | 节约空间,检测结果不受种子的碰撞弹跳影响 | 对相机性能和检测算法的实时性要求较高 |
涂油皮带排种器试验台性能检测 | 落种过程 | 结果更加直观,易于测量,且对相机性能要求较低 | 检测结果受种子与涂油皮带的碰撞影响,且受限于输送带运动特性,无法模拟高速播种作业 |
Table 3 Comparison of the advantages and disadvantages of different testing methods
检测方法 | 应用场景 | 优点 | 缺点 |
---|---|---|---|
种子在排种器内运动的性能检测 | 取种、排种过程 | 节约空间,检测结果不受种子的碰撞弹跳影响 | 对相机性能和检测算法的实时性要求较高 |
涂油皮带排种器试验台性能检测 | 落种过程 | 结果更加直观,易于测量,且对相机性能要求较低 | 检测结果受种子与涂油皮带的碰撞影响,且受限于输送带运动特性,无法模拟高速播种作业 |
1 | 杨丽, 颜丙新, 张东兴, 等. 玉米精密播种技术研究进展[J].农业机械学报, 2016, 47(11): 38-48. |
YANG Li, YAN Bingxin, ZHANG Dongxing, et al. Research progress on precision planting technology of maizeg [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 38-48. | |
2 | 陈建国, 李彦明, 覃程锦, 等. 小麦精量播种机排种高精度检测系统设计与试验[J]. 农业机械学报, 2019, 50(1): 66-74. |
CHEN Jianguo, LI Yanming, QIN Chengjin, et al. Design and experiment of precision detecting system for wheat-planter seeding quantity [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 66-74. | |
3 | 李洪昌, 高芳, 赵湛, 等. 国内外精密排种器研究现状与发展趋势[J]. 中国农机化学报,2014, 35(2): 12-16, 56. |
LI Hongchang, GAO Fang, ZHAO Zhan, et al. Domestic and overseas research status and development trend of precision seedmetering device [J]. Journal of Chinese Agricultural Mechanization, 2014, 35(2): 12-16, 56. | |
4 | 冯慧敏, 高娜娜, 孟志军, 等. 基于自动导航的小麦精准对行深施追肥机设计与试验[J]. 农业机械学报, 2018, 49(4): 60-67. |
FENG Huimin, GAO Nana, MENG Zhijun, et al. Design and experiment of deep fertilizer applicator based on autonomous navigation for precise row-following [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 60-67. | |
5 | 陈学深, 黄柱健, 马旭, 等. 水稻机械除草避苗控制系统设计与试验[J]. 吉林大学学报(工学版), 2021, 51(1): 386-396. |
CHEN Xueshen, HUANG Zhujian, MA Xu, et al. Design and test of control system for rice mechanical weeding and seedling-avoiding control [J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 386-396. | |
6 | 颜丙新, 付卫强, 武广伟, 等. 基于卫星定位的玉米高位精播种子着床位置预测方法[J]. 农业机械学报, 2021, 52(2): 44-54. |
YAN Bingxin, FU Weiqiang, WU Guangwei, et al. Seed location prediction method of maize high-height precision planting based on satellite positioning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 44-54. | |
7 | ISO Standard 7256/1-1984(E): Sowing equipment-test methods Part 1: Single seed drills(precision drills). Geneva [S]. |
8 | 苑严伟, 白慧娟, 方宪法, 等. 玉米播种与测控技术研究进展[J]. 农业机械学报, 2018, 49(9): 1-18. |
YUAN Yanwei, BAI Huijuan, FANG Xianfa, et al. Research progress on maize seeding and its measurement and control technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9):1-18. | |
9 | KUMHALA F, KVIZZ, KMOCH J, et al. Dynamic laboratory measurementwith dielectric sensor for forage mass flow determination [J]. Research in Agricultural Engineering, 2007, 53(4): 149-154. |
10 | 周利明, 王书茂, 张小超, 等. 基于电容信号的玉米播种机排种性能监测系统[J]. 农业工程学报, 2012, 28(13): 16-21. |
ZHOU Liming, WANG Shumao, ZHANG Xiaochao, et al. Seed monitoring system for corn planter based on capacitance signal [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(13): 16-21. | |
11 | 赵天才. 水稻直播机播量控制与播种监测系统设计与试验[D].南京: 南京农业大学, 2019. |
ZHAO Tiancai. Design and experiment of sowing amount control and seeding monitoring system for rice direct seeder [D]. Nanjing: Nanjing Agricultural University, 2019. | |
12 | KARIMI H, NAVID H, MAHMOUDI A. Online laboratory evaluation of seeding-machine application by an acoustic technique [J]. Spanish Journal of Agricultural Research, 2015, 13(1): e0202. |
13 | 黄东岩, 贾洪雷, 祁悦, 等. 基于聚偏二氟乙烯压电薄膜的播种机排种监测系统[J]. 农业工程学报, 2013, 29(23): 15-22. |
HUANG Dongyan, JIA Honglei, QI Yue, et al. Seeding monitor system for planter based on polyvinylidence fluoride piezoelectric film [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(23): 15-22. | |
14 | 陈飞飞. 基于特征表示的行为识别方法研究[D]. 武汉: 华中科技大学, 2015. |
CHEN Feifei. Research on action recognition method based on feature representation [D]. Wuhan: Huazhong University of Science & Technology, 2015. | |
15 | 陈书法, 冯博, 芦新春, 等. 智能电控精量播种技术研究现状及展望[J]. 中国农机化学报, 2022, 43(12): 5-12. |
CHEN Shufa, FENG Bo, LU Xinchun, et al. Research progress and prospect of intelligent electronic control precision seeding technology [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 5-12. | |
16 | 胡松立. 基于机器视觉的PCB微钻几何参数精密检测技术研究[D]. 上海: 上海交通大学, 2009. |
HU Songli. Machine vision based precise detection of PCB microdrill’s geometry parameters [D]. Shanghai: Shanghai Jiao Tong University, 2009. | |
17 | 董文浩, 马旭, 李宏伟, 等. 嵌入式机器视觉的杂交稻低播种量检控装置设计[J]. 吉林大学学报(工学版), 2020, 50(6): 2295-2305. |
DONG Wenhao, MA Xu, LI Hongwei, et al. Design of low seeding quantity detection and control device for hybrid rice utilizing embedded machine vision [J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(6): 2295-2305. | |
18 | 杨洋, 苗伟, 张铁, 等. 基于图像自适应分类算法的花生出苗质量评价方法[J]. 农业机械学报, 2018, 49(3): 28-35. |
YANG Yang, MIAO Wei, ZHANG Tie, et al. Quality evaluation method of peanut seeding based on image adaptive classification algorithm[J].Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 28-35. | |
19 | 李朋飞, 王熙, 丁国超, 等. 精准播种机粒距检测系统信号与图像处理的研究[J]. 农机化研究, 2021, 43(6): 20-25. |
LI Pengfeia, WANG Xia, DING Guochao, et al. Precision seeder particle distance detection output signal noise reduction and image processing[J]. Journal of Agricultural Mechanization Research, 2021, 43(6): 20-25. | |
20 | 陈进, 边疆, 李耀明, 等. 基于高速摄像系统的精密排种器性能检测试验[J]. 农业工程学报, 2009, 25(9): 90-95. |
CHEN Jin, BIAN Jiang, LI Yaoming, et al. Performance detection experiment of precision seed metering device based on high-speed camera system [J]. Transactions of the CSAE, 2009, 25(9): 90-95. | |
21 | LI Q, LIN H, XIU Y, et al. The design and development of test platform for wheat precision seeding based on image processing techniques [C]// Computer and Computing Technologies in Agriculture III: Third IFIP TC 12 International Conference, CCTA 2009, Beijing, China, October 14-17, 2009, Revised Selected Papers 3. Springer Berlin Heidelberg, 2010: 352-358. |
22 | 韩国鑫, 谭峰, 谢秋菊, 等. 基于机器视觉的水稻精量穴直播机播种监测系统的研究[J]. 肇庆学院学报, 2020, 41(5): 55-62. |
HAN Guoxin, TAN Feng, XIE Qiuju, et al. Precise dibbling species mechanical sowing rice monitoring system based on machine vision [J]. Journal of Zhaoqing University, 2020, 41(5): 55-62. | |
23 | 廖庆喜, 邓在京, 黄海东. 高速摄影在精密排种器性能检测中的应用[J]. 华中农业大学学报, 2004(5): 570-573. |
LIAO Qingxi, DENG Zaijing, HUANG Haidong. Application of the high speed photography checking the precision metering performances [J]. Journal of Huazhong Agricultural University, 2004(5): 570-573. | |
24 | 郝嘉永. 基于无人机RGB图像的玉米播种质量监测与产量分析[D]. 呼和浩特: 内蒙古农业大学, 2021. |
HAO Jiayong. Monitoring of maize sowing quality and uniformity analysis of emergence based on UAV RGB image [D]. Hohhot: Inner Mongolia Agricultural University, 2021. | |
25 | 刘志, 贺正, 苗芳芳, 等. 基于无人机的水肥一体化玉米出苗率估算方法与试验[J]. 浙江农业学报, 2019, 31(6):977-985. |
LIU Zhi, HE Zheng, MIAO Fangfang, et al. Method and experiment for estimating emergence rate of water and fertilizer integratedmaize based on drone technology [J]. Acta Agriculturae Zhejiangensis, 2019, 31(6): 977-985. | |
26 | 戴建国, 薛金利, 赵庆展, 等. 利用无人机可见光遥感影像提取棉花苗情信息[J]. 农业工程学报, 2020, 36(4): 63-71. |
DAI Jianguo, XUE Jinli, ZHAO Qingzhan, et al. Extraction of cotton seedling growth information using UAV visible light remote sensing images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4): 63-71. | |
27 | 朱松松, 陈至坤, 张怡. 基于无人机数字图像的棉花出苗信息提取[J]. 现代电子技术, 2022, 45(1): 61-64. |
ZHU Songsong, CHEN Zhikun, ZHANG Yi. Cotton seeding emergence information extraction based on UAV digital image [J]. Modern Electronics Technique, 2022, 45(1): 61-64. | |
28 | 陈雯. 基于无人机图像的小麦出苗均匀度评价[D]. 扬州: 扬州大学,2018. |
CHEN Wen. Evaluation of seed emergence uniformity of wheat based on UAV image [D]. Yangzhou: Yangzhou University, 2018. | |
29 | 赵弋秋. 基于无人机影像的大豆苗情快速检测方法研究[D].郑州: 河南农业大学, 2022. |
ZHAO Yiqiu. Research on rapid detection method of soybean seedling growth information based on UAV images [D]. Zhengzhou: Henan Agricultural University,2022. | |
30 | 张新龙. 基于无人机影像的玉米出苗质量评价方法研究[D].石河子: 石河子大学, 2022. |
ZHANG Xinlong. Study on evaluation method of maize seedling emergence quality based on UAV image[D].Shihezi: Shihezi University, 2022. | |
31 | LIN Y D, CHEN T T, LIU S Y, et al. Quick and accurate monitoring peanut seedlings emergence rate through UAV video and deep learning [J]. Computers and Electronics in Agriculture, 2022: 197. |
32 | 刘志. 基于无人机玉米出苗率估算与光谱特性的氮素诊断[D].银川: 宁夏大学, 2019. |
LIU Zhi. Estimation of maize seeding emergence rate of UAV and nitrogen diagnosis of spectral characteristics [D]. Yinchuan: Ningxia University, 2019. | |
33 | 侯加林, 田林, 李天华, 等. 基于双侧图像识别的大蒜正芽及排种试验台设计与试验[J]. 农业工程学报, 2020, 36(1): 50-58. |
HOU Jialin, TIAN Lin, LI Tianhua, et al. Design and experiment of test bench for garlic bulbil adjustment and seeding based on bilateral image identification [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1): 50-58. | |
34 | 程振, 宋井玲, 徐洪岑, 等. 基于机器视觉的蒜种智能定向技术综述[J]. 智能化农业装备学报(中英文), 2023, 4(2): 63-70. |
CHENG Zhen, SONG Jingling, XU Hongcen, et al. Overview of intelligent orientation technology of garlic seed based on machine vision[J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(2): 63-70. | |
35 | 薛金利. 基于无人机可见光影像的棉花苗情监测[D]. 石河子: 石河子大学,2020. |
XUE Jinli. Cotton seedling monitoring based on visible light image of UAV [D]. Shihezi: Shihezi University, 2020. | |
36 | 高振, 卢彩云, 李洪文, 等. 种子位置信息视觉检测系统开沟延时回土装置研究[J]. 农业机械学报, 2022, 53(12): 32-42. |
GAO Zhen, LU Caiyun, LI Hongwen, et al. Soil backfill delayed opening device for visual detection system of seed position information [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(12): 32-42. | |
37 | NAVID H, EBRAHIMIAN S, GASSEMZADEH H. Laboratory evaluation of seed metering device using image processing method [J]. Australian Journal of Agricultural Engineering, 2011, 2: 1-4. |
38 | MANGUS D L, SHARDA A, FLIPPO D, et al. Development of high-speed camera hardware and software package to evaluate real-time electric seed meter accuracy of a variable rate planter[J]. Computers and Electronics in Agriculture, 2017, 142: 314-325. |
39 | KARAYEL D, WIESEHOFF M, ÖZMERZI A, et al. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system [J].Computers and Electronics in Agriculture, 2006, 50: 89–96. |
40 | 安爱琴, 王玉顺, 聂永芳, 等. 基于机器视觉的帧种子数识别及其应用[J]. 农机化研究, 2013, 35(4): 171-173, 194. |
AN Aiqin, WANG Yushun, NIE Yongfang, et al. Recognition and application of the frame seed number based on machine vision [J].Journal of Agricultural Mechanization Research, 2013, 35(4): 171-173, 194. | |
41 | 王玉顺, 郭俊旺, 赵晓霞, 等. 基于机器视觉的条播排种器性能检测及分析[J]. 农业机械学报, 2005(11): 56-60, 55. |
WANG Yushun, GUO Junwang, ZHAO Xiaoxia, et al. Performance detection and analysis of a machine vision based metering mechanism of drill [J]. Transactions of the Chinese Society for Agricultural Machinery, 2005(11): 56-60, 55. | |
42 | 蔡晓华, 吴泽全, 刘俊杰, 等. 基于计算机视觉的排种粒距实时检测系统[J]. 农业机械学报, 2005(8): 41-44. |
CAI Xiaohua, WU Zequan, LIU Junjie, et al. Grain distance real-time checking and measuring system based on computer vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2005(8): 41-44. | |
43 | 马焕菲. 基于VC++排种种子流视觉检测软件的研发[D]. 晋中: 山西农业大学, 2015. |
MA Huanfei.The software development of visual seed flow detection based on VC++ [D]. Jinzhong: Shanxi Agricultural University, 2015. | |
44 | 李润涛. 基于光纤式传感器与机器视觉的双重漏播检测及补种装置研究[D]. 淄博: 山东理工大学, 2022. |
LI Runtao. Research on double missed seeding detection and reseeding device based on optical fiber sensor and machine vision [D]. Zibo: Shandong University of Technology,2022. | |
45 | 刘立晶, 刘忠军, 贾振华. 多功能排种器性能试验台的设计与试验[J]. 农机化研究, 2012, 34(4): 123-126. |
LIU Lijing, LIU Zhongjun, JIA Zhenhua. Design and test on multifunctional test-bed for seed metering performance [J]. Journal of Agricultural Mechanization Research, 2012, 34(4): 123-126. | |
46 | JI Yao, HU Shuangyan, YAN Wei, et al. Structure design and experiment of air suction double-layer cylinder seedling raising and sowing line [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2022, 3(1): 46-53. |
47 | 王平岗, 杨德义, 吴东林. 基于计算机视觉的气吸滚筒式精密排种器控制系统[J]. 农机化研究, 2019, 41(7): 202-206. |
WANG Pinggang, YANG Deyi, WU Donglin. Control system of air suction drum type precision seed metering device based on computer vision [J]. Journal of Agricultural Mechanization Research, 2019, 41(7): 202-206. | |
48 | 赵静, 马伟童, 崔欣, 等. 一种基于机器视觉的精量播种自动监测及补种装置[P]. 中国: CN108848782A, 2018-11-23. |
49 | DEVIN L M, AJAY S, DANIEL F, et al. Development of high-speed camera hardware and software package to evaluate real-time electric seed meter accuracy of a variable rate planter [J]. Computers and Electronics in Agriculture, 2017, 142: 314-325. |
50 | BADUA S, SHARDA A, FLIPPO D. Sensing system for real-time measurement of seed spacing, depth, and geo-location of corn: A proof-of-concept study[J]. Transactions of the ASABE, 2019, 62(6): 1779-1788. |
51 | LIU W, ZHOU Z, XU X, et al. Evaluation method of rowing performance and its optimization for UAV-based shot seeding device on rice sowing[J]. Computers and Electronics in Agriculture, 2023, 207: 107718. |
52 | 卢彩云, 高振, 李洪文,等. 玉米播种装置及玉米播种质量检测方法[P]. 中国: CN113079755B, 2022-12-13. |
[1] | Bohong Li, , , Hua Li, Xindan Qi, Xi Chen, , Yunlong Ma, Yongjian Wang. Simulation and parameter optimization of seed metering device based on CFDDEMSimulation and parameter optimization of seed #br# metering device based on CFDDE#br# [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2021, 2(2): 26-41. |
[2] | Haojun Wen, Xuegeng Chen, Fochu Pan. Development of precision seeder for drip irrigation under plastic film in Xinjiang [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2020, 1(1): 7-12. |
[3] | Tong Hu, Xindan Qi, Hua Li , Song Yang, Yongjian Wang, Suyang Xu, Mingchao Bai. Seed movement characteristics and filling performance of seed metering device for baby bok choybased on CFD-DEM approach Seed movement characteristics and filling performance of seed metering device for baby bok choy based on CFD-DEM approach* [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2020, 1(1): 32-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||