1 |
张隆梅, 刘岗微, 齐彦栋, 等. 农业机械无人驾驶系统关键技术研究进展(英文)[J]. 智能化农业装备学报(中英文), 2022, 3(1): 27-36.
|
|
ZHANG Longmei, LIU Gangwei, QI Yandong, et al. Research progress on key technologies of agricultural machinery unmanned driving system [J]. Journal of Intelligent Agricultural Mechanization, 2022, 3(1): 27-36.
|
2 |
刘羊, 刘宇洋, 陈江春, 等. 标准化果园多功能作业平台关键技术研究现状与趋势[J]. 智能化农业装备学报(中英文), 2024, 5(1): 31-39.
|
|
LIU Yang, LIU Yuyang, CHEN Jiangchun, et al. Research status and trend of key technologies of standardized orchard multi-functional operation platform [J]. Journal of Intelligent Agricultural Mechanization, 2024, 5(1): 31-39.
|
3 |
李建平, 李绍波, 杨欣, 等. 苹果园生产管理智能机械化技术与装备研究进展与展望[J]. 智能化农业装备学报(中英文), 2024, 5(4): 66-83.
|
|
LI Jianping, LI Shaobo, YANG Xin, et al. Research progress on intelligent mechanization technology and equipment for apple orchard production management [J]. Journal of Intelligent Agricultural Mechanization, 2024, 5(4): 66-83.
|
4 |
张翼. 中国式现代化的推进、人口转型与弹性退休制度[J]. 北京大学学报(哲学社会科学版), 2024, 61(5): 128-136.
|
|
ZHANG Yi. Promotion of chinese-style modernization,population transformation and flexible retirement system [J]. Journal of Peking University (Philosophy and Social Sciences), 2024, 61(5): 128-136.
|
5 |
王文明, 王志强, 韩明明, 等. 我国智慧果园关键技术装备研究应用现状与展望[J]. 中国果树, 2024(7): 143-149.
|
6 |
朱云, 凌志刚, 张雨强. 机器视觉技术研究进展及展望[J]. 图学学报, 2020, 41(6): 871-890
|
7 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
|
8 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers [C]// European conference on computer vision. Cham: Springer International Publishing, 2020.
|
9 |
REDMON J, FARHADI A. YOLO9000: Better, faster, stronger [J]. IEEE, 2017: 6517-6525.
|
10 |
BENJUMEA A, TEETI I, CUZZOLIN F, et al. YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles [J]. 2021.
|
11 |
HUANG Z, WANG J, FU X, et al. DC-SPP-YOLO: Dense connection and spatial pyramid pooling based YOLO for object detection [J]. Information Sciences, 2020, 522.
|
12 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs [J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(4): 834-848.
|
13 |
WENG W, ZHU X. INet: Convolutional networks for biomedical image segmentation [J]. IEEE Access, 2021, 9: 16591-16603.
|
14 |
LI H, XIONG P, FAN H, et al. Dfanet: Deep feature aggregation for real-time semantic segmentation [C]// Proceedings of the IEE E/CVF conference on computer vision and pattern recognition, 2019: 9522-9531.
|
15 |
GUO Y, ASHMAWY K, HUANG E, et al. Under the hood of uber atg's machinelearning infrastructure and versioning control platform for self-driving vehicles [J]. Uber Engineering, March, 2020.
|
16 |
SISTU G, LEANG I, YOGAMANI S. Real-time joint object detection and semantic segmentation network for automated driving [J]. 2019.
|
17 |
SENER O, KOLTUN V. Multi-task learning as multi-objective optimization [J]. Advances in neural Information Processing Systems, 2018, 31.
|
18 |
STANDLEY T, ZAMIR A, CHEN D, et al. Which tasks should be learned together in multi-task learning? [C]// International conference on machine learning. PMLR, 2020: 9120-9132.
|
19 |
WU D, LIAO M W, ZHANG W T, et al. Correction to: YOLOP: You only look once for panoptic driving perception [J]. Machine Intelligence Research, 2023, 20(6): 952-952.
|
20 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017(99): 2999-3007.
|
21 |
CRAWSHAW M. Multi-task learning with deep neural networks: A survey [J]. arXiv preprint arXiv:, 2020.
|
22 |
LIU S, JOHNS E, DAVISON A J. End-to-end multi-task learning with attention [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1871-1880.
|
23 |
ZAMIR A R, SAX A, SHEN W, et al. Taskonomy: Disentangling task transfer learning [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3712-3722.
|
24 |
VANDENHENDE S, GEORGOULIS S, VAN GANSBEKE W, et al. Multi-task learning for dense prediction tasks: A survey [J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2021, 44(7): 3614-3633.
|
25 |
JOCHER G, CHAURASIA A, STOKEN A, et al. Ultralytics/yolov5: v7.0-YOLOv5 SOTA real-time instance segmentation [J]. Zenodo, 2022.
|
26 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection [J]. arXiv preprint arXiv: , 2020.
|
27 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
|
28 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8759-8768.
|
29 |
GOYAL P, DOLLÁR P, GIRSHICK R, et al. Accurate, large minibatch sgd: Training imagenet in 1 hour [J]. arXiv preprint arXiv:, 2017.
|
30 |
WEI L, DRAGOMIR A, DUMITRU E, et al. SSD: Single shot multibox detector [J]. Springer, Cham, 2016.
|
31 |
VU D, NGO B, PHAN H. HybridNets: End-to-end perception network [J]. 2022.
|