Journal of Intelligent Agricultural Mechanization ›› 2023, Vol. 4 ›› Issue (3): 32-41.DOI: 10.12398/j.issn.2096-7217.2023.03.004
Previous Articles Next Articles
LU Mengyuan1(), WANG Tianyi1,2(), CHEN Xinchang3, ZHANG Yuzhuo1, GONG Zeqi4, ZHANG Xingshan1
Received:
2023-05-12
Revised:
2023-07-24
Online:
2023-08-15
Published:
2023-08-15
Corresponding author:
WANG Tianyi
LU Mengyuan, WANG Tianyi, CHEN Xinchang, ZHANG Yuzhuo, GONG Zeqi, ZHANG Xingshan. Simulation research on cooperative flight model of UAV formation based on ROS and PX4[J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(3): 32-41.
Add to citation manager EndNote|Ris|BibTeX
URL: http://znhnyzbxb.niam.com.cn/EN/10.12398/j.issn.2096-7217.2023.03.004
无人机序号 | 起飞坐标/(m,m,m) | 悬停坐标/(m,m,m) | 相对误差/m | ||
---|---|---|---|---|---|
理论 | 实际 | 理论 | 实际 | ||
0 | (0,3,0) | (-0.060 392,2.977 764,-0.013 842) | (1,4,1) | (0.942 345,3.817 296,1.003 825) | 0.728 7 |
1 | (3,3,0) | (2.939 607 8,2.975 464 2,-0.016 522) | (4,4,1) | (3.942 397,3.817 322,1.004 061) | 0.881 6 |
2 | (6,3,0) | (5.939 607 8,2.977 634 2,-0.010 212) | (7,4,1) | (6.942 307,3.817 346,1.004 202) | 0.728 4 |
3 | (0,6,0) | (-0.060 392,5.977 764,-0.022 335) | (1,7,1) | (0.942 635,6.817 450,1.004 241) | 0.728 9 |
4 | (3,6,0) | (2.947 156 8,5.977 764 1,-0.018 215) | (4,7,1) | (3.943 414,6.817 608,1.004 388) | 0.881 3 |
5 | (6,6,0) | (5.947 156 8,5.988 882 0,-0.014 615) | (7,7,1) | (6.943 964,6.817 801,1.004 354) | 0.728 2 |
6 | (0,9,0) | (-0.052 843,8.988 882,-0.020 038) | (1,10,1) | (0.944 340,9.818 012,1.004 124 3) | 0.729 7 |
7 | (3,9,0) | (2.947 156 8,8.988 882,-0.014 728) | (4,10,1) | (3.944 579,9.818 174,1.003 569) | 0.881 3 |
8 | (6,9,0) | (5.947 156 8,8.988 882,-0.014 638) | (7,10,1) | (6.944 666,9.818 325,1.002 841) | 0.728 2 |
Table 1 Experimental results and comparison of autonomous navigation
无人机序号 | 起飞坐标/(m,m,m) | 悬停坐标/(m,m,m) | 相对误差/m | ||
---|---|---|---|---|---|
理论 | 实际 | 理论 | 实际 | ||
0 | (0,3,0) | (-0.060 392,2.977 764,-0.013 842) | (1,4,1) | (0.942 345,3.817 296,1.003 825) | 0.728 7 |
1 | (3,3,0) | (2.939 607 8,2.975 464 2,-0.016 522) | (4,4,1) | (3.942 397,3.817 322,1.004 061) | 0.881 6 |
2 | (6,3,0) | (5.939 607 8,2.977 634 2,-0.010 212) | (7,4,1) | (6.942 307,3.817 346,1.004 202) | 0.728 4 |
3 | (0,6,0) | (-0.060 392,5.977 764,-0.022 335) | (1,7,1) | (0.942 635,6.817 450,1.004 241) | 0.728 9 |
4 | (3,6,0) | (2.947 156 8,5.977 764 1,-0.018 215) | (4,7,1) | (3.943 414,6.817 608,1.004 388) | 0.881 3 |
5 | (6,6,0) | (5.947 156 8,5.988 882 0,-0.014 615) | (7,7,1) | (6.943 964,6.817 801,1.004 354) | 0.728 2 |
6 | (0,9,0) | (-0.052 843,8.988 882,-0.020 038) | (1,10,1) | (0.944 340,9.818 012,1.004 124 3) | 0.729 7 |
7 | (3,9,0) | (2.947 156 8,8.988 882,-0.014 728) | (4,10,1) | (3.944 579,9.818 174,1.003 569) | 0.881 3 |
8 | (6,9,0) | (5.947 156 8,8.988 882,-0.014 638) | (7,10,1) | (6.944 666,9.818 325,1.002 841) | 0.728 2 |
目标航点序号 | 目标位置坐标/m | 实际位置坐标/m | 预期累计飞行距离/m | 累计飞行误差/m |
---|---|---|---|---|
1 | (3.5,4,1) | (3.455 083,4.321 457,0.917 043) | 5.32 | 0.335 004 |
2 | (3.5,8,1) | (3.376 038,7.255 361,1.267 812) | 9.32 | 0.513 196 |
3 | (5,9,1) | (4.503 481,9.331 964,0.827 435) | 11.05 | 0.827 949 |
4 | (3,6,1) | (2.502 856,6.342 934,0.829 316) | 14.79 | 0.829 532 |
5 | (3,9,1) | (2.502 680,9.365 054,0.833 430) | 17.79 | 0.832 552 |
6 | (2,12,1) | (1.942 875,12.825 011,1.325 381) | 20.95 | 0.884 961 |
7 | (4,11,1) | (4.302 737,11.348 236,0.960 427) | 23.19 | 0.960 230 |
8 | (9,13,1) | (8.186 833,13.675 290,1.191 437) | 28.58 | 0.977 177 |
9 | (6,10,1) | (5.791 630,10.293 263,1.877 684) | 32.82 | 1.017 770 |
10 | (6,15,1) | (4.581 583,14.006 248,0.978 429) | 37.82 | 1.432 636 |
Table 2 Dominant navigation experiment results
目标航点序号 | 目标位置坐标/m | 实际位置坐标/m | 预期累计飞行距离/m | 累计飞行误差/m |
---|---|---|---|---|
1 | (3.5,4,1) | (3.455 083,4.321 457,0.917 043) | 5.32 | 0.335 004 |
2 | (3.5,8,1) | (3.376 038,7.255 361,1.267 812) | 9.32 | 0.513 196 |
3 | (5,9,1) | (4.503 481,9.331 964,0.827 435) | 11.05 | 0.827 949 |
4 | (3,6,1) | (2.502 856,6.342 934,0.829 316) | 14.79 | 0.829 532 |
5 | (3,9,1) | (2.502 680,9.365 054,0.833 430) | 17.79 | 0.832 552 |
6 | (2,12,1) | (1.942 875,12.825 011,1.325 381) | 20.95 | 0.884 961 |
7 | (4,11,1) | (4.302 737,11.348 236,0.960 427) | 23.19 | 0.960 230 |
8 | (9,13,1) | (8.186 833,13.675 290,1.191 437) | 28.58 | 0.977 177 |
9 | (6,10,1) | (5.791 630,10.293 263,1.877 684) | 32.82 | 1.017 770 |
10 | (6,15,1) | (4.581 583,14.006 248,0.978 429) | 37.82 | 1.432 636 |
1 | 谷旭平, 唐大全, 唐管政. 无人机编队协同导航研究现状及进展[J]. 舰船电子工程, 2021, 41(7): 28-33. |
GU Xuping, TANG Daquan, TANG Guanzheng. Research status and progress of UAV formation cooperative navigation [J]. Ship Electronic Engineering, 2021, 41(7): 28-33. | |
2 | 李鹏举, 毛鹏军, 耿乾, 等. 无人机集群技术研究现状与趋势[J]. 航空兵器, 2020, 27(4): 25-32. |
LI Pengju, MAO Pengjun, GENG Qian, et al. Research status and trend of UAV swarm technology [J]. Aero Weaponry, 2020, 27(4): 25-32. | |
3 | 戴大伟, 龙海英. 无人机发展与应用[J]. 指挥信息系统与技术, 2013, 4(4): 7-10. |
DAI Dawei, LONG Haiying. Development and application of unmanned aerial vehicle [J]. Command Information System and Technology, 2013, 4(4): 7-10. | |
4 | 宗群, 王丹丹, 邵士凯, 等. 多无人机协同编队飞行控制研究现状及发展[J]. 哈尔滨工业大学报, 2017, 49(3): 1-14. |
ZONG Qun, WANG Dandan, SHAO Shikai, et al. Research status and development of multi UAV coordinated formation flight control [J]. Journal of Harbin Institute of Technology, 2017, 49(3): 1-14. | |
5 | 夏天. 基于激光2D-SLAM的地图构建算法研究[D]. 杭州: 杭州电子科技大学, 2020. |
XIA Tian. Research on mapping algorithm based on laser 2D-SLAM [D]. Hangzhou: Hangzhou Dianzi University, 2020. | |
6 | LIU Y Y, MONTENBRUCK J M, ZELAZO D, et al. A distributed control approach to formation balancing and maneuvering of multiple multirotor UAVs [J]. IEEE Transactions on Robotics, 2018, 34(4): 870-882. |
7 | 成成. 多无人机协同编队飞行控制关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018. |
CHENG Cheng. Research on key technologies for collaborative formation flight control of multiple unmanned aerial vehicles [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018. | |
8 | 赵伟伟. 无人机集群编队及其避障控制关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020. |
ZHAO Weiwei. Research on key technologies of UAV flocking formation and obstacle avoidance control [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020. | |
9 | 张迪, 刘婷婷, 宋家友. 基于动态规划的无人机编队最优协同容错控制[J]. 电光与控制, 2023, 30(4): 34-39. |
ZHANG Di, LIU Tingting, SONG Jiayou. Optimal cooperative fault-tolerant control of UAV formation based on dynamic programming [J]. Electronics Optics & Control, 2023, 30(4): 34-39. | |
10 | 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1): 4-14. |
JIA Yongnan, TIAN Siying, LI Qing. Development of unmanned aerial vehicle swarms [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 4-14. | |
11 | 刘钢, 汤俊, 刘陈, 等. 无人飞行器集群协同行为建模技术综述[J]. 系统工程与电子技术, 2021, 43(8): 2221-2231. |
LI Gang, TANG Jun, LIU Chen, et al. Survey of cooperative behavior modeling technology for unmanned aerial vehicles clusters [J]. Systems Engineering and Electronics, 2021, 43(8): 2221-2231. | |
12 | 邹立岩, 张明智, 柏俊汝, 等. 无人机集群作战建模与仿真研究综述[J]. 战术导弹技术, 2021(3): 98-108. |
ZOU Liyan. ZHANG Mingzhi. BAI Junru,et al. A survey of modeling and simulation of UAS swarm operation [J]. Tactical Missile Technology, 2021(3): 98-108. | |
13 | ALÁEZ D, OLAZ X, PRIETO M, et al. HIL flight simulator for VTOL-UAV pilot training using X-Plane [J]. Information, 2022, 13(12): 585. |
14 | 丁中涛. 基于ROS的无人机自主降落技术研究[D]. 成都: 成都理工大学, 2020. |
DING Zhongtao. Research on autonomous landing of UAV based on ROS [D]. Chengdu: Chengdu University of Technology, 2020. | |
15 | XIAO K, MA L, TAN S, et al. Implementation of UAV coordination based on a hierarchical multi-UAV simulation platform [C]//Advances in Guidance, Navigation and Control: Proceedings of 2020 International Conference on Guidance, Navigation and Control, ICGNC 2020, Tianjin, China, October 23—25, 2020. Springer Singapore, 2022: 5131-5143. |
16 | 胡新雨, 马澜, 肖昆, 等. 基于XTDrone的无人机集群协同搜索仿真系统[J]. 机器人技术与应用, 2022(5): 25-28. |
HU Xinyu, MA Lan, XIAO Kun, et al. A UAV cluster collaborative search simulation system based on XTDrone [J]. Robot Technique and Application, 2022(5): 25-28. | |
17 | 孙翔龙, 梁彦刚. 基于Gazebo和PX4的强化学习训练仿真环境接口设计与实现[J]. 电子技术与软件工程, 2022(5): 68-71. |
SUN Xianglong. LIANG Yangang. Design and implementation of reinforcement learning training simulation environment interface based on Gazebo and PX4 [J]. Electronic Technology & Software Engineering, 2022(5): 68-71. | |
18 | 刘书林. 四旋翼无人机编队飞行的控制策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
LIU Shulin. Study on formation control strategy for quad rotors [D]. Harbin: Harbin Institute of Technology, 2016. | |
19 | 王超. 基于ROS的移动机器人全遍历路径规划研究[D]. 南昌: 南昌大学, 2022. |
WANG Chao. Research on full traversal path planning of mobile robot based on ROS [D]. Nanchang: Nanchang University, 2022. | |
20 | 王岸雄. 基于ROS的自主移动机器人环境建模和路径规划研究[D]. 西安: 西安理工大学, 2020. |
WANG Anxiong. Research on environment modeling and path planning of autonomous mobile robot based on ROS [D]. Xi’an: Xi’an University of Technology, 2020. | |
21 | 王洪斌, 郝策, 张平, 等. 基于A*算法和人工势场法的移动机器人路径规划[J]. 中国机械工程, 2019, 30(20): 2489-2496. |
WANG Hongbin, HAO Ce, ZHANG Ping, et al. Path planning of mobile robots based on A* algorithm and artificial potential field algorithm [J]. China Mechanical Engineering, 2019, 30(20): 2489-2496. | |
22 | 李晓旭, 马兴录, 王先鹏. 移动机器人路径规划算法综述[J]. 计算机测量与控制, 2022, 30(7): 9-19. |
LI Xiaoxu, MA Xinglu, WANG Xianpeng. A survey of path planning algorithms for mobile robots [J]. Computer Measurement & Control, 2022, 30(7): 9-19. |
[1] | QIAN Zhenjie, JIN Chengqian, LIU Zheng, YANG Tengxiang. Development status and trends of intelligent control technology in unmanned farms [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(3): 1-13. |
[2] | CUI Xinyu, CUI Bingbo, MA Zhen, HAN Yi, ZHANG Jianxin, WEI Xinhua. Integration of geometric-based path tracking controller and its application in agricultural machinery automatic navigation [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(3): 24-31. |
[3] | Zhang Lei, Liu Yiting, Chen Guangming, Li Peijuan. Research on navigation and rectification of inspection robot based on ultrasonic sensor [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2022, 3(2): 64-70. |
[4] | Zhang Longmei, Liu Gangwei, Qi Yandong, Yang Tengxiang, Jin Chengqian. Research progress on key technologies of agricultural machinery unmanned driving system [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2022, 3(1): 27-36. |
[5] | Xiwen Luo. Artificial intelligence and plant protection mechanization [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2020, 1(1): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||