Journal of Intelligent Agricultural Mechanization ›› 2025, Vol. 6 ›› Issue (2): 44-57.DOI: 10.12398/j.issn.2096-7217.2025.02.004
Previous Articles Next Articles
WANG Kelin1,2(), LIU Longshen2,3, CHEN Jinxin1,2, LI Peng2,3, OKINDA Cedric1,2,4, SHEN Mingxia2,3(
)
Received:
2024-09-18
Revised:
2024-12-05
Online:
2025-05-15
Published:
2025-05-20
Corresponding author:
SHEN Mingxia
About author:
WANG Kelin, E-mail: 2024212017@stu.njau.edu.cn
Supported by:
CLC Number:
WANG Kelin, LIU Longshen, CHEN Jinxin, LI Peng, OKINDA Cedric, SHEN Mingxia. Application and prospect of artificial intelligence in livestock and poultry farming robots[J]. Journal of Intelligent Agricultural Mechanization, 2025, 6(2): 44-57.
Add to citation manager EndNote|Ris|BibTeX
URL: http://znhnyzbxb.niam.com.cn/EN/10.12398/j.issn.2096-7217.2025.02.004
研究对象 | 检测指标 | 主要设备 | 主要技术 | 实现效果 | 参考文献 | 年份 | 国家 |
---|---|---|---|---|---|---|---|
生猪 | 重量 | CCD | 视觉图像分析(VIA)系统 | [ | 2004 | 英国 | |
蛋鸡 | 体温 | 热红外相机 | 方差分析 | [ | 2021 | 韩国 | |
羊 | 体尺 | 双目CCD | 图像分割、轮廓拟合 | MRE | [ | 2024 | 中国 |
肉鸡 | 重量 | Kinect深度相机 | 贝叶斯线性回归、ANN | 平均误差55 g | [ | 2016 | 丹麦 |
生猪 | 耳温 | 热红外相机 | 目标检测、图像分割 | MRE | [ | 2021 | 中国 |
肉鸡 | 体温 | 热红外相机 | 椭圆拟合、K均值聚类 | 最大误差 | [ | 2019 | 中国 |
奶牛 | 眼温 | 热红外相机 | 改进YOLO v4 | MRE | [ | 2022 | 中国 |
生猪 | 重量 | 手动测量体尺 | 径向基函数(RBF) | R2=0.79 | [ | 2023 | 中国 |
肉牛 | 重量 | CCD | CNN/RNN | MAE=19.83 kg | [ | 2020 | 美国 |
Table 1 Research on detection(prediction) of physiological indexes of livestock and poultry
研究对象 | 检测指标 | 主要设备 | 主要技术 | 实现效果 | 参考文献 | 年份 | 国家 |
---|---|---|---|---|---|---|---|
生猪 | 重量 | CCD | 视觉图像分析(VIA)系统 | [ | 2004 | 英国 | |
蛋鸡 | 体温 | 热红外相机 | 方差分析 | [ | 2021 | 韩国 | |
羊 | 体尺 | 双目CCD | 图像分割、轮廓拟合 | MRE | [ | 2024 | 中国 |
肉鸡 | 重量 | Kinect深度相机 | 贝叶斯线性回归、ANN | 平均误差55 g | [ | 2016 | 丹麦 |
生猪 | 耳温 | 热红外相机 | 目标检测、图像分割 | MRE | [ | 2021 | 中国 |
肉鸡 | 体温 | 热红外相机 | 椭圆拟合、K均值聚类 | 最大误差 | [ | 2019 | 中国 |
奶牛 | 眼温 | 热红外相机 | 改进YOLO v4 | MRE | [ | 2022 | 中国 |
生猪 | 重量 | 手动测量体尺 | 径向基函数(RBF) | R2=0.79 | [ | 2023 | 中国 |
肉牛 | 重量 | CCD | CNN/RNN | MAE=19.83 kg | [ | 2020 | 美国 |
导航方案 | 特点 | 优点 | 缺点 |
---|---|---|---|
固定路径的导航 | 沿预设的磁条、电缆或标志物行走 | 实现简单、成本较低 | 灵活性差、适应能力弱 |
基于视觉的导航 | 使用CCD、深度相机和机器视觉进行图像识别 | 适应性强、可处理复杂问题 | 对计算能力要求较高 |
激光雷达(LiDAR)导航 | 利用激光扫描生成高精度地图(SLAM) | 高精度、实时环境感知 | 成本较高 |
无线电导航 | 利用Wi-Fi、蓝牙、RFID等无线信号定位 | 适合室内环境、成本较低 | 精度低,设备易相互干扰 |
超声波和红外传感器导航 | 使用超声和红外监测距离和障碍物 | 成本较低、实现简单 | 难以适应复杂环境 |
卫星定位 | 利用卫星信号进行定位和导航 | 覆盖范围广、方案成熟 | 不适用于室内养殖环境 |
Table 2 Comparison of navigation solutions for livestock and poultry farming robots
导航方案 | 特点 | 优点 | 缺点 |
---|---|---|---|
固定路径的导航 | 沿预设的磁条、电缆或标志物行走 | 实现简单、成本较低 | 灵活性差、适应能力弱 |
基于视觉的导航 | 使用CCD、深度相机和机器视觉进行图像识别 | 适应性强、可处理复杂问题 | 对计算能力要求较高 |
激光雷达(LiDAR)导航 | 利用激光扫描生成高精度地图(SLAM) | 高精度、实时环境感知 | 成本较高 |
无线电导航 | 利用Wi-Fi、蓝牙、RFID等无线信号定位 | 适合室内环境、成本较低 | 精度低,设备易相互干扰 |
超声波和红外传感器导航 | 使用超声和红外监测距离和障碍物 | 成本较低、实现简单 | 难以适应复杂环境 |
卫星定位 | 利用卫星信号进行定位和导航 | 覆盖范围广、方案成熟 | 不适用于室内养殖环境 |
1 | 中华人民共和国农业农村部. 农村农业部生猪专题[EB/OL]. (2023-12-31)[2024-07-10]. . |
2 | 中国国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[EB/OL]. (2024-02-29)[2024-07-10]. . |
3 | 前瞻产业研究院. 2023年中国生猪养殖行业市场规模、竞争格局及发展前景[EB/OL]. (2023-01-15)[2024-07-10]. . |
4 | 沈明霞, 陈金鑫, 丁奇安, 等. 生猪自动化养殖装备与技术研究进展与展望[J]. 农业机械学报, 2022, 53(12): 1-19. |
SHEN Mingxia, CHEN Jinxin, DING Qi'an, et al. Current situation and development trend of pig automated farming equipment application [J].Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(12): 1-19. | |
5 | 中华人民共和国农业农村部. 农业农村部关于加快畜牧业机械化发展的意见[EB/OL]. (2020-02-17)[2024-07-10]. . |
6 | 中华人民共和国农业农村部. “十四五”全国畜牧兽医行业发展规划[EB/OL]. (2021-12-14)[2024-07-11]. . |
7 | 王儒敬, 孙丙宇. 农业机器人的发展现状及展望[J]. 中国科学院院刊, 2015, 30(6): 803-809. |
WANG Rujing, SUN Bingyu. Current status and prospects of agricultural robots [J]. Bulletin of the Chinese Academy of Sciences, 2015, 30(6): 803-809. | |
8 | 胡惠玥, 杨小玲, 刘仁鑫, 等. 畜禽养殖机器人研究现状与展望[J]. 南方农机, 2023, 54(19): 1-6, 10. |
HU Huiyue, YANG Xiaoling, LIU Renxin, et al. Research status and prospects of livestock and poultry breeding robots [J]. Southern Agricultural Machinery, 2023, 54(19): 1-6, 10. | |
9 | ROWE E, DAWKINS M S, GEBHARDT-HENRICH S G. A systematic review of precision livestock farming in the poultry sector: Is technology focussed on improving bird welfare [J]. Animals, 2019, 9(9): 614. |
10 | 唐瑜嵘, 沈明霞, 薛鸿翔, 等. 人工智能技术在畜禽养殖业的发展现状与展望[J]. 智能化农业装备学报(中英文), 2023, 4(1): 1-16. |
TANG Yurong, SHEN Mingxia, XUE Hongxiang, et al. Development status and prospect of artificial intelligence technology in livestock and poultry breeding [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(1): 1-16. | |
11 | BANHAZI T M, BLACK J L. Precision livestock farming: A suite of electronic systems to ensure the application of best practice management on livestock farms [J]. Australian Journal of Multi-disciplinary Engineering, 2009, 7(1): 1-14. |
12 | GEFFEN O, YITZHAKY Y, BARCHILON N, et al. A machine vision system to detect and count laying hens in battery cages [J]. Animal, 2020, 14(12): 2628-2634. |
13 | 张岩琪, 周硕, 张凝, 等. 基于改进实例分割算法的区域养殖生猪计数系统[J]. 智慧农业(中英文), 2024, 6(4): 53-63. |
ZHANG Yanqi, ZHOU Shuo, ZHANG Ning, et al. Regional pig counting system based on improved instance segmentation algorithm [J]. Smart Agriculture, 2024, 6(4): 53-63. | |
14 | XIAO J, LIU G, WANG K, et al. Cow identification in free-stall barns based on an improved Mask R-CNN and an SVM [J]. Computers and Electronics in Agriculture, 2022, 194: 106738. |
15 | 丁奇安, 刘龙申, 陈佳, 等. 基于Jetson Nano+YOLO v5的哺乳期仔猪目标检测[J]. 农业机械学报, 2022, 53(3): 277-284. |
DING Qi'an, LIU Longshen, CHEN Jia, et al. Target detection of suckling piglets based on Jetson Nano+YOLO v5 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(3): 277-284. | |
16 | 张燕飞. 两轮自主控制鸡舍巡检机器人路径规划研究[D]. 太原: 中北大学, 2023. |
ZHANG Yanfei. Research on path planning of two-wheeled autonomous control chicken house inspection robot [D]. Taiyuan: North University of China, 2023. | |
17 | 沈明霞, 太猛, CEDRIC Okinda, 等. 基于深层卷积神经网络的初生仔猪目标实时检测方法[J]. 农业机械学报, 2019, 50(8): 270-279. |
SHEN Mingxia, TAI Meng, CEDRIC Okinda, et al. Real-time detection method for newborn piglets based on deep convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 270-279. | |
18 | MASELYNE J, ADRIAENS I, HUYBRECHTS T, et al. Measuring the drinking behaviour of individual pigs housed in group using radio frequency identification (RFID) [J]. Animal, 2016, 10(9): 1557-1566. |
19 | 杨断利, 王永胜, 陈辉, 等. 基于SEEC-YOLO v5s的散养蛋鸡日常行为识别与统计系统[J]. 农业机械学报, 2023, 54(9): 316-328. |
YANG Duanli, WANG Yongsheng, CHEN Hui, et al. Daily behavior recognition and statistical system of free-range laying hens based on SEEC-YOLO v5s [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(9): 316-328. | |
20 | 刘龙申, 舒翠霓, 李波, 等. 基于EfficientDet的围产期母猪姿态识别[J]. 农业机械学报, 2022, 53(4): 271-279. |
LIU Longshen, SHU Cuini, LI Bo, et al. Posture recognition of peripartum sows based on EfficientDet [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(4): 271-279. | |
21 | 马肄恒. 面向笼养肉鸭行为与死亡识别的自主巡检装备创制[D]. 杭州: 浙江科技大学, 2024. |
MA Yiheng. Creation of autonomous inspection equipment for behavior and death identification of caged ducks [D]. Hangzhou: Zhejiang University of Science and Technology, 2024. | |
22 | 陆舟, 沈明霞, 刘龙申, 等. 基于轻量化网络与注意力机制的育肥猪采食行为识别方法研究[J]. 南京农业大学学报, 2023, 46(4): 802-812. |
LU Zhou, SHEN Mingxia, LIU Longshen, et al. Research on the recognition method of fattening pig feeding behavior based on lightweight network and attention mechanism [J]. Journal of Nanjing Agricultural University, 2023, 46(4): 802-812. | |
23 | LI G, JV Q, LIU F, et al. Pig pose recognition method based on openpose [C]// Advances in Precision Instruments and Optical Engineering: Proceedings of the International Conference on Precision Instruments and Optical Engineering, 2021. Singapore: Springer Nature Singapore, 2022: 533-545. |
24 | 田浩楠, 华婧伊, 张少帅, 等. 基于红外热成像与线性回归拟合的母猪体温检测技术研究[J]. 智能化农业装备学报(中英文), 2023, 4(1): 36-41. |
25 | 谢秋菊, 刘学飞, 郑萍, 等. 畜禽体温自动监测技术及应用研究进展[J]. 农业工程学报, 2022, 38(15): 212-225. |
XIE Qiuju, LIU Xuefei, ZHENG Ping, et al. Research progress on automatic monitoring technology and application of livestock and poultry body temperature [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15) : 212-225. | |
26 | DOESCHL A B, WHITTEMORE C T, KNAP P W, et al. Using visual image analysis to describe pig growth in terms of size and shape [J]. Animal Science, 2004, 79(4): 415-427. |
27 | KIM N Y, KIM S J, OH M, et al. Changes in facial surface temperature of laying hens under different thermal conditions [J]. Animal Bioscience, 2020, 34(7): 1235-1242. |
28 | 周艳青, 薛河儒, 白洁, 等. 基于图像的羊体尺参数测点检测方法的研究[J] . 内蒙古农业大学学报(自然科学版), 2024, 45(2): 69-77. |
ZHOU Yanqing, XUE Heru, BAI Jie, et al. Research on the detection method of sheep body size parameters based on image[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2024, 45(2): 69-77. | |
29 | MORTENSEN A K, LISOUSKI P, AHRENDT P. Weight prediction of broiler chickens using 3D computer vision[J]. Computers and Electronics in Agriculture, 2016, 123: 319-326. |
30 | 肖德琴, 林思聪, 刘勤, 等. 基于红外热成像的生猪耳温自动提取算法[J]. 农业机械学报, 2021, 52(8): 255-262. |
XIAO Deqin, LIN Sicong, LIU Qin, et al. Automatic extraction algorithm of pig ear temperature based on infrared thermal imaging [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 255-262. | |
31 | XIONG X, LU M, YANG W, et al. An automatic head surface temperature extraction method for top-view thermal image with individual broiler [J]. Sensors, 2019, 19(23): 5286. |
32 | WANG Y, KANG X, CHU M, et al. Deep learning-based automatic dairy cow ocular surface temperature detection from thermal images [J]. Computers and Electronics in Agriculture, 2022, 202: 107429. |
33 | CHEN H, LIANG Y, HUANG H, et al. Live pig-weight learning and prediction method based on a multilayer RBF network [J]. Agriculture, 2023, 13(2): 253. |
34 | GJERGJI M, DE MORAES WEBER V, SILVA L O C, et al. Deep learning techniques for beef cattle body weight prediction [C]// 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020: 1-8. |
35 | XUE H, SHEN M, SUN Y, et al. Instance segmentation and ensemble learning for automatic temperature detection in multiparous sows [J]. Sensors, 2023, 23(22): 9128. |
36 | ZHANG B, XIAO D, LIU J, et al. Pig eye area temperature extraction algorithm based on registered images [J]. Computers and Electronics in Agriculture, 2024, 217: 108549. |
37 | 李卓, 毛涛涛, 刘同海, 等. 基于机器视觉的猪体质量估测模型比较与优化[J]. 农业工程学报, 2015, 31(2): 155-161. |
LI Zhuo, MAO Taotao, LIU Tonghai, et al. Comparison and optimization of pig body mass estimation models based on machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 155-161. | |
38 | 李伟, 董国忠, 周艳, 等. 浅析机器人在猪生产中的应用前景[J]. 中国畜牧杂志, 2022, 58(6): 270-273. |
LI Wei, DONG Guozhong, ZHOU Yan, et al. A brief analysis of the application prospects of robots in pig production [J]. China Animal Husbandry Magazine, 2022, 58(6): 270-273. | |
39 | 沈明霞, 刘龙申, 闫丽, 等. 畜禽养殖个体信息监测技术研究进展[J]. 农业机械学报, 2014, 45(10): 245-251. |
SHEN Mingxia, LIU Longshen, YAN Li, et al. Research progress in individual information monitoring technology for livestock and poultry breeding [J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(10): 245-251. | |
40 | 薛鸿翔, 沈明霞, 刘龙申, 等. 基于改进YOLO v5s的经产母猪发情检测方法研究[J]. 农业机械学报, 2023, 54(1): 263-270. |
XUE Hongxiang, SHEN Mingxia, LIU Longshen, et al. Research on estrus detection method for multiparous sows based on improved YOLO v5s [J]. Transactions of the Chinese Society of Agricultural Machinery, 2023, 54(1): 263-270. | |
41 | GILOH M, SHINDER D, YAHAV S. Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory status [J]. Poultry Science, 2012, 91(1): 175-188. |
42 | XUE H, SUN Y, CHEN J, et al. CAT-CBAM-Net: An automatic scoring method for sow body condition based on CNN and transformer [J]. Sensors, 2023, 23(18): 7919. |
43 | 毛燕茹, 牛童, 王鹏, 等. 利用Kalman滤波和Hungarian算法的多目标奶牛嘴部跟踪及反刍监测[J]. 农业工程学报, 2021, 37(19): 192-201. |
MAO Yanru, NIU Tong, WANG Peng, et al. Multi-target cow mouth tracking and rumination monitoring based on Kalman filter and Hungarian algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19): 192-201. | |
44 | WANG Y, LI S, ZHANG H, et al. A lightweight CNN-based model for early warning in sow oestrus sound monitoring [J]. Ecological Informatics, 2022, 72: 101863. |
45 | LIU L, ZHOU J, ZHANG B, et al. Visual detection on posture transformation characteristics of sows in late gestation based on Libra R-CNN [J]. Biosystems Engineering, 2022, 223: 219-231. |
46 | SCHAEFER A, VON GAZA H, COOK N, et al. PSXVII-38 Metabolic efficiency in swine determined with automated real time infrared thermography [J]. Journal of Animal Science, 2018, 96(): 146. |
47 | 姚文, 邓为, 许毅, 等. 家禽亚健康状态监测与健康预警展望[J]. 南京农业大学学报, 2023, 46(4): 635-644. |
YAO Wen, DENG Wei, XU Yi, et al. Monitoring of subhealth status and health warning of poultry [J]. Journal of Nanjing Agricultural University, 2023, 46(4): 635-644. | |
48 | MONTEIRO A, SANTOS S, GONÇALVES P. Precision agriculture for crop and livestock farming—Brief review [J]. Animals, 2021, 11(8): 2345. |
49 | 袁超, 沈明霞, 姚文, 等. 基于发声特征和深度学习的白羽肉鸡全生命周期咳嗽检测方法[J]. 南京农业大学学报, 2023, 46(5): 975-985. |
YUAN Chao, SHEN Mingxia, YAO Wen, et al. Cough detection method for white-feathered broiler chickens throughout their life cycle based on vocalization features and deep learning [J]. Journal of Nanjing Agricultural University, 2023, 46(5): 975-985. | |
50 | 许志强, 沈明霞, 刘龙申, 等. 基于红外热图像的肉鸡腿部异常检测方法[J]. 南京农业大学学报, 2021, 44(2): 384-393. |
XU Zhiqiang, SHEN Mingxia, LIU Longshen, et al. Broiler leg abnormality detection method based on infrared thermal image [J]. Journal of Nanjing Agricultural University, 2021, 44(2): 384-393. | |
51 | 沈明霞, 王梦雨, 刘龙申, 等. 基于深度神经网络的猪咳嗽声识别方法[J]. 农业机械学报, 2022, 53(5): 257-266. |
SHEN Mingxia, WANG Mengyu, LIU Longshen, et al. Pig cough sound recognition method based on deep neural network [J]. Transactions of the Chinese Society of Agricultural Machinery, 2022, 53(5): 257-266. | |
52 | WU D, WU Q, YIN X, et al. Lameness detection of dairy cows based on the YOLOv3 deep learning algorithm and a relative step size characteristic vector [J]. Biosystems Engineering, 2020, 189: 150-163. |
53 | BANAKAR A, SADEGHI M, SHUSHTARI A. An intelligent device for diagnosing avian diseases: Newcastle, infectious bronchitis, avian influenza [J]. Computers and Electronics in Agriculture, 2016, 127: 744-753. |
54 | 陈佳, 丁奇安, 刘龙申, 等. 基于YOLO v5与短时跟踪的鸡只呼吸道疾病早期检测[J]. 农业机械学报, 2023, 54(1): 271-279. |
CHEN Jia, DING Qi'an, LIU Longshen, et al. Early detection of respiratory diseases in chickens based on YOLO v5 and short-term tracking [J]. Transactions of the Chinese Society of Agricultural Machinery, 2023, 54(1): 271-279. | |
55 | XIN H, BERRY I L, BARTON T L, et al. Feeding and drinking patterns of broilers subjected to different feeding and lighting programs [J]. Journal of Applied Poultry Research, 1993, 2(4): 365-372. |
56 | 龙长江, 谭鹤群, 朱明, 等. 畜禽舍移动式智能监测平台研制[J]. 农业工程学报, 2021, 37(7): 68-75. |
LONG Changjiang, TAN Hequn, ZHU Ming, et al. Development of a mobile intelligent monitoring platform for livestock and poultry houses [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7): 68-75. | |
57 | PEREIRA W F, SILVA FONSECA L DA, PUTTI F F, et al. Environmental monitoring in a poultry farm using an instrument developed with the Internet of Things concept [J] . Computers and electronics in agriculture, 2020, 170: 105257. |
58 | 崔琼, 刘勇, 徐顺来. 猪舍环境的多参数无模型自适应控制算法设计[J]. 华南农业大学学报, 2024, 45(5): 702-708. |
CUI Qiong, LIU Yong, XU Shunlai. Design of multi-parameter model-free adaptive control algorithm for pig house environment [J]. Journal of South China Agricultural University, 2024, 45(5): 702-708. | |
59 | 李嘉豪. 猪舍环境智能巡检与监控机器人系统研究[D]. 赣州: 江西理工大学, 2022. |
LI Jiahao. Research on intelligent inspection and monitoring robot system for pig house environment [D]. Ganzhou: Jiangxi University of Science and Technology, 2022. | |
60 | 王恩宇, 苏永屹, 于浦, 等. 基于CFD与TRNSYS的圆形猪舍内环境控制研究[J]. 黑龙江畜牧兽医, 2024, (10): 47-54, 112. |
WANG Enyu, SU Yongyi, YU Pu, et al. Research on environmental control of circular pig houses based on CFD and TRNSYS [J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2024(10): 47-54, 112. | |
61 | DOERFLER R L, MARTIN R, BERNHARDT H. Implications of robotic walkway cleaning for hoof disorders in dairy cattle [J]. International Journal of Engineering Research and Application, 2017, 7(1): 98-104. |
62 | 史文杰. 气液一体式猪舍消毒喷雾机的研制与试验[D]. 泰安: 山东农业大学, 2023. |
SHI Wenjie. Development and experiment of gas-liquid integrated pig house disinfection sprayer [D]. Tai'an: Shandong Agricultural University, 2023. | |
63 | 樊士冉, 张志勇, 李远伟, 等. 畜牧业有限空间清洗作业机器人设计与研究[J]. 黑龙江畜牧兽医, 2023(17): 55-60. |
FAN Shiran, ZHANG Zhiyong, LI Yuanwei, et al. Design and research of limited space cleaning robot for animal husbandry [J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2023(17): 55-60. | |
64 | 刘凯歌. 基于DEM-CFD耦合的猪舍高压清洗机器人关键技术研究[D]. 杭州: 浙江科技大学, 2024. |
LIU Kaige. Research on key technologies of pig house high pressure cleaning robot based on DEM-CFD coupling [D]. Hangzhou: Zhejiang University of Science and Technology, 2024. | |
65 | EBERTZ P, KROMMWEH M S, BÜSCHER W. Feasibility study: improving floor cleanliness by using a robot scraper in group-housed pregnant sows and their reactions on the new device [J]. Animals, 2019, 9(4): 185. |
66 | FENG Q, WANG B, ZHANG W, et al. Development and test of spraying robot for anti-epidemic and disinfection in animal housing [C] //2021 WRC Symposium on Advanced Robotics and Automation (WRC SARA). IEEE, 2021: 24-29. |
67 | 赵文文, 王海峰, 朱君, 等. 猪舍消杀巡检机器人系统设计与试验[J]. 农业机械学报, 2022, 53(S2): 270-277. |
ZHAO Wenwen, WANG Haifeng, ZHU Jun, et al. Design and experiment of pig house disinfection inspection robot system [J]. Transactions of the Chinese Society of Agricultural Machinery, 2022, 53(S2) : 270-277. | |
68 | 柳忠魁. 国内外奶牛挤奶设备综述[J]. 粮油加工与食品机械, 1984(4): 1-9. |
LIU Zhongkui. Overview of domestic and foreign dairy cow milking equipment [J]. Grain and Oil Processing and Food Machinery, 1984(4): 1-9. | |
69 | 于燚, 李鑫. 挤奶设备终端发展概况[J]. 中国奶牛, 2022(6): 38-43. |
YU Yi, LI Xin. Overview of the development of milking equipment terminals [J]. China Dairy, 2022(6): 38-43. | |
70 | GEA. GEA DairyRobot R9500机器人挤奶系统[EB/OL]. , 2022-10-10. |
71 | MILKOMAX. Milking robot-milkomax solutions laitières[EB/OL]. , 2020-01-31. |
72 | 李硕. 七自由度挤奶机器人的设计与研究[D]. 淮南: 安徽理工大学, 2023. |
LI Shuo. Design and research of seven-degree-of-freedom milking robot [D]. Huainan: Anhui University of Science and Technology, 2023. | |
73 | 高继伟, 李彩琴, 庞建建, 等. 9JZP-80高效转盘式挤奶机的研发与应用[J]. 黑龙江畜牧兽医, 2022(12): 50-55, 127-129. |
GAO Jiwei, LI Caiqin, PANG Jianjian, et al. Research and development and application of 9JZP-80 high-efficiency rotary milking machine [J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2022(12): 50-55, 127-129. | |
74 | CHANG C L, XIE B X, WANG C H. Visual guidance and egg collection scheme for a smart poultry robot for free-range farms [J]. Sensors, 2020, 20(22): 6624. |
75 | JOFFE B P, USHER C T. Autonomous robotic system for picking up floor eggs in poultry houses [C]// 2017 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2017. |
76 | VROEGINDEWEIJ B A, BLAAUW S K, IJSSELMUIDEN J M M, et al. Evaluation of the performance of PoultryBot, an autonomous mobile robotic platform for poultry houses [J]. Biosystems Engineering, 2018, 174: 295-315. |
77 | 苑进, 李扬, 刘雪美, 等. 禽蛋自动捡拾系统结构设计及机械手运动规划[J]. 农业工程学报, 2016, 32(8): 48-55. |
YUAN Jin, LI Yang, LIU Xuemei, et al. Structural design of automatic egg picking system and manipulator motion planning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8): 48-55. | |
78 | 李伟, 董国忠, 周艳, 等. 浅析机器人在猪生产中的应用前景[J]. 中国畜牧杂志, 2022, 58(6): 270-273. |
LI Wei, DONG Guozhong, ZHOU Yan, et al. A brief analysis of the application prospects of robots in pig production [J]. China Animal Husbandry Magazine, 2022, 58(6): 270-273. | |
79 | SVEAVERKEN. RoboPusher Pro[EB/OL]. , 2024-05-31. |
80 | 赵大庆, 管延华, 齐自成, 等. 生猪液态饲料智能喂料车设计与试验[J]. 中国农机化学报, 2022, 43(12): 91-98. |
ZHAO Daqing, GUAN Yanhua, QI Zicheng, et al. Design and experiment of intelligent feeding vehicle for liquid feed of pigs [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 91-98. | |
81 | 唐诗杰, 谷月, 李传珍, 等. 基于EDEM的笼养种鸭精准饲喂器的设计与试验[J]. 华中农业大学学报, 2024, 43(5): 269-277. |
TANG Shijie, GU Yue, LI Chuanzhen, et al. Design and experiment of precision feeder for caged breeder ducks based on EDEM [J]. Journal of Huazhong Agricultural University, 2024, 43(5): 269-277. | |
82 | 闫银发, 刘冠鲁, 宋占华, 等. 精准配比料药一体化生猪饲喂器设计与试验[J]. 农业机械学报, 2023, 54(S2): 142-149. |
YAN Yinfa, LIU Guanlu, SONG Zhanhua, et al. Design and experiment of pig feeder with integrated precise feed and medicine ratio [J]. Transactions of the Chinese Society of Agricultural Machinery, 2023, 54(S2): 142-149. | |
83 | 王鑫杰. 基于机器视觉的奶牛个体进食信息自动监测方法研究[D]. 哈尔滨: 东北农业大学, 2023. |
WANG Xinjie. Research on automatic monitoring method of individual cow eating information based on machine vision [D]. Harbin: Northeast Agricultural University, 2023. | |
84 | ZUIDHOF M J, FEDORAK M V, OUELLETTE C A, et al. Precision feeding: Innovative management of broiler breeder feed intake and flock uniformity [J]. Poultry Science, 2017, 96(7): 2254-2263. |
85 | LELY. Lely Vector[EB/OL]. , 2019-10-30. |
86 | 李波. 基于巡检机器人的母猪体尺智能检测系统研究[D] . 南京: 南京农业大学, 2022. |
LI Bo. Research on intelligent detection system of sow body size based on inspection robot [D]. Nanjing: Nanjing Agricultural University, 2022. | |
87 | EDWARDS D J, AKHTAR J, RILLIE I, et al. Systematic analysis of driverless technologies [J]. Journal of Engineering, Design and Technology, 2022, 20(6): 1388-1411. |
88 | KING A J, PORTUGAL S J, STRÖMBOM D, et al. Biologically inspired herding of animal groups by robots [J]. Methods in Ecology and Evolution, 2023, 14(2): 478-486. |
89 | PARANJAPE A A, CHUNG S J, KIM K, et al. Robotic herding of a flock of birds using an unmanned aerial vehicle [J]. IEEE Transactions on Robotics, 2018, 34(4): 901-915. |
90 | TREVELYAN J P. Robots in the shearing shed: Automated shearing of sheep using robots [J]. Advanced Robotics, 1987, 2(1): 3-8. |
91 | 田儒雅, 王红彦, 孙巍, 等. 2023中国农业科技论文与专利全球竞争力分析[J]. 农学学报, 2024, 14(3): 10-12. |
TIAN Ruya, WANG Hongyan, SUN Wei, et al. Analysis on the global competitiveness of China's agricultural science and technology papers and patents in 2023 [J]. Acta Agronomica Sinica, 2024, 14(3): 10-12. | |
92 | RESEARCH KBV. KBV reGlobal Agricultural Robots Market Size, Share & Industry Trends Analysis Report 2023-2030[R/OL]. , 2023-10. |
[1] | WU Qing, WEI Runxuan, ZHOU Le, YANG Hao, LIU Wanru, XU Hongmei. Lightweight fresh tea leaf recognition method based on improved YOLOv5s [J]. Journal of Intelligent Agricultural Mechanization, 2025, 6(1): 1-14. |
[2] | WEI Huiling, LIANG Chengbin, WANG Jinhai, CHEN Mingyou, LUO Lufeng. Research progress of cable-driven flexible manipulator and its application in agricultural robots [J]. Journal of Intelligent Agricultural Mechanization, 2024, 5(4): 95-106. |
[3] | WANG Yuanhong, YANG Zhiming, WANG Qi, LU Jinzhu, GAO Junfeng. Design and experiment of tea bud recognition method and light source of recognition system based on YOLOv5-SPD [J]. Journal of Intelligent Agricultural Mechanization, 2024, 5(3): 33-43. |
[4] | GAO Ning, ZHANG Anqi, MEI Hebo, YANG Xinghua, GAN Lei, MENG Zhijun. Current status and development trends of soil moisture monitoring technologies [J]. Journal of Intelligent Agricultural Mechanization, 2024, 5(3): 51-62. |
[5] | GUO Wenjuan, FENG Quan. Development status and trends of interpretability methods based on class activation mapping in crop detection and recognition [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(4): 41-48. |
[6] | Yuan Zhiyu, Zhao Yunhui, Wang Song, Zhao Zhuo, Wu Yujin, Wang Chunxin. Development and application of management and control system for intellectual sheep breeding based on Internet of Things platform [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(1): 54-61. |
[7] | Tang Yurong, Shen Mingxia, Xue Hongxiang, Chen Jinxin. Development status and prospect of artificial intelligence technology in livestock and poultry breeding [J]. Journal of Intelligent Agricultural Mechanization, 2023, 4(1): 1-16. |
[8] | Hongjun Wang, Xiaoyu Ji, Hui Zhao, Youjun Yue. SENet optimized Deeplabv3+ freshwater fish body semantic segmentation* [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2021, 2(1): 36-43. |
[9] | Xiwen Luo. Artificial intelligence and plant protection mechanization [J]. Journal of Intelligent Agricultural Mechanization (in Chinese and English), 2020, 1(1): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||